

Université de Toulouse

THÈSE

En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE

Délivré par :

Institut National Polytechnique de Toulouse (Toulouse INP)

Discipline ou spécialité :

Pathologie, Toxicologie, Génétique et Nutrition

Présentée et soutenue par :

Mme VALENTINE BARASSE le mardi 3 novembre 2020

Titre :

Etude de peptides de venin de fourmis : diversité moléculaire et lien avec la fonction immunitaire

Ecole doctorale :

Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingénieries (SEVAB)

Unité de recherche : Biochimie et Toxicologie des Substances Bioactives (BTSB)

> Directeur(s) de Thèse : M. MICHEL TREILHOU MME ELSA BONNAFE

Rapporteurs :

M. DENIS SERVENT, CNRS Mme MARYLÈNE POIRIE, UNIVERSITE COTE D'AZUR

Membre(s) du jury :

M. JEAN-LUC GATTI, INRA PACA, Président Mme ELSA BONNAFE, INSTITUT NATIONAL UNIV. CHAMPOLLION, Membre M. MICHEL TREILHOU, ENSFEA DE TOULOUSE, Membre

Remerciements

Les premiers remerciements reviennent à mes directeurs, Michel Treilhou et Elsa Bonnafé. Merci à vous pour votre confiance sur ce projet, de mon stage de M2 jusqu'aux termes de ce doctorat. Merci de m'avoir accordée ma chance et de m'avoir accompagnée de par votre expertise, votre écoute et vos recommandations au cours de ces trois ans et demi. Malgré vos occupations, vous trouvez toujours un petit moment pour moi si le besoin s'en ressent. J'ai réellement apprécié ce travail à vos côtés et suis très heureuse de continuer.

Merci aux membres du comité de pilotage de ce travail de thèse pour leurs conseils avisés : Jérôme Orivel, Jérôme Leprince, Céline Brochier-Armanet. Je tiens à remercier personnellement Elisabeth Huguet, mon ancienne professeure et directrice de master qui encore aujourd'hui s'applique à me conseiller lorsque j'en ressens le besoin. Elisabeth, merci pour tes recommandations et pour cette dévotion dont tu fais preuve envers tes étudiants (anciens et actuels) que j'admire particulièrement.

Merci à Denis Servent et Marylène Poirié d'avoir évalué ce manuscrit malgré les courtes limites de temps, ainsi qu'à Jean-Luc Gatti d'avoir accepté le rôle d'examinateur.

Nathan, un grand merci pour tes travaux d'analyse des venins et de relecture de ce manuscrit. Jean-Michel, merci de prendre autant soin de nos fourmis. A vous deux, un immense merci pour votre bonne humeur quotidienne et pour l'intérêt que vous avez porté à mes travaux. Les manip' auraient été nettement moins chouettes sans vous pour regarder par-dessus mon épaule et me demander « à quel point j'allais coûter cher » ou si « j'allais encore en zigouiller beaucoup ».

A Pierre (fournisseur officiel de rhum arrangé et distributeur de rire), Alice, Caroline, Florence, Jean-Luc, merci pour votre bonne humeur. Merci également à Arnaud, notre dernier venu, pour ses conseils avisés. Je vous souhaite à tous de vous épanouir au sein de vos champs de recherche et d'enseignement respectifs.

Une pensée particulière pour Jean, envahisseur voleur de piment et de café. Merci à toi pour ton soutien lors de la rédaction de ce manuscrit. Merci infiniment pour ton écoute, tes conseils et pour tes mauvaises blagues qui ne manquent jamais de me dérider. Je tiens également à remercier Delphine pour son accueil et son écoute depuis mon arrivée à Champollion. Delphine, tu as été d'un soutien sans faille, dans tous les aspects et pour ceci tu as toute ma gratitude. Je remercie également Jenny Moro pour son accueil et sa sympathie.

Un merci spécial pour Karen Chevalier et Valérie Fernandez. Merci à vous pour votre gentillesse et pour m'avoir guidée au travers du parcours du combattant qu'est l'administration. C'est toujours un plaisir de venir vous voir.

A Raphaël et Emma, merci d'avoir été mes petites mains. Vous encadrer a été un vrai plaisir et je ne doute aucunement de votre futur dans la recherche. Belle route à vous.

Mon arrivée dans le sud de la France a ainsi été marquée de belles rencontres, tant sur le plan professionnel que personnel. Marion, Vincent, vous êtes présents depuis le début de mon aventure albigeoise, d'abord en tant que collègues puis en tant qu'amis. Je vous suis infiniment reconnaissante pour votre soutien sans faille. Malgré les embûches, vous faites preuve d'un courage et d'une détermination à toute épreuve, tout en restant présents pour chacun de vos proches. A nos retrouvailles, nos ragots, nos barbecues cramés, aux « bières pour hommes fragiles » que Vincent aime tant, et à votre petite Zoé.

A Axel, sans qui une bonne partie de ce travail de thèse n'aurait pu s'effectuer. Deux sarthois, de même formation, se retrouvent à Albi. Le monde est décidément bien petit et je n'aurais pu espérer mieux comme encadrant. Merci d'avoir partagé ta passion avec moi, de m'avoir formée et soutenue, et surtout merci de la patience et de l'implication dont tu fais encore preuve aujourd'hui. A très vite « chef », je te souhaite le meilleur dans tous les aspects de ta vie.

Au groupe des doctorants, anciens et nouveaux, un immense merci général pour votre présence et votre bonne humeur. Steven, Ibtissam, je n'ai aucun doute sur vos qualités scientifiques et vous souhaite le meilleur pour la fin de votre doctorat. Aux ergo, Eugénie et Charlotte, les moments passés en votre compagnie sont toujours un plaisir. A très vite !

Je tiens à remercier plus particulièrement Manon, Morgane (même galère les filles !), Ludo et Lucie (deux petits diables sur mon épaule gauche). Merci à vous pour votre écoute et votre soutien sans faille depuis notre rencontre. Ce n'est pas avec vous que je pourrais entamer un régime si l'envie m'en prenait mais le fait est que je n'aurais pu rêver de meilleurs acolytes. A nos séances de psy, nos embuscades en terrasses et nos repas beaucoup trop gras pour que les recettes soient prononcées. Santé ! A ceux qui m'ont toujours soutenue dans mes projets : sarthois (Hélène, Estelle, Camille), bourguignons (Yann, Nicolas, Guillaume) et tourangeaux (Aimie, Joey, Manon, Elisa, Marine et Vincent). Merci à vous pour votre bienveillance et votre présence. En attendant de pouvoir vous rendre visite, sachez que ma porte vous sera toujours ouverte.

A ma famille, merci à vous pour votre amour et votre soutien immuables, pour vos conseils ainsi que pour votre positivité. Merci de me supporter dans mes moments de panique, de vous mettre dans des situations improbables dans le seul but d'amuser la galerie et de me « booster » quand le besoin s'en fait ressentir. J'espère que ce manuscrit vous initiera au monde merveilleux des fourmis et vous permettra de comprendre les raisons de mon absence. J'ai hâte de vous retrouver.

1	Sommaire	
2	LISTE DES TRAVAUX	5
3	LISTE DES FIGURES ET DES TABLEAUX	7
4	INTRODUCTION GENERALE	11
5	CHAPITRE I : ÉTAT DE L'ART	15
6	1. LA FONCTION VENIMEUSE DANS LE REGNE ANIMAL : COMPOSITION, EVOLUTION	I ET
7	INTERET SCIENTIFIQUE	15
8	1.1. Définition des venins et répartition dans le règne animal	15
9	1.2. Fonctions des venins dans le règne animal	16
10	1.3. Production des venins et diversité des systèmes vulnérants	20
11	1.4. Diversité moléculaire des venins : focus sur les venins de nature protéique	21
12	1.4.1. Synthèse et maturation des toxines protéiques	21
13	1.4.2. Évolution des toxines protéiques de venins – Mécanismes impliqués	25
14	1.5. Intérêt scientifique de l'étude des venins	28
15	2. METHODES D'ETUDES DE LA COMPOSITION DES VENINS : FOCUS SUR LES VENIN	S
16	PEPTIDIQUES	31
17	2.1. Protéomique appliquée à la vénomique	32
18	2.2. Transcriptomique appliquée à la vénomique	33
19	2.3. Génomique appliquée à la vénomique	35
20	2.4. Traitement intégré des données issues des différentes approches « omiques » pour l'étude	de la
21	composition des venins	37

22	2.5.	L'approche intégrative « vénomique » : une révolution pour la caractérisation exhaustive des	venins
23	d'espè	ces négligées	39
24	3. I	ES PEPTIDES DE VENINS DE FOURMIS	44
25	3.1.	Les paraponeratoxines (Paraponerinae)	45
26	3.2.	Les myrmeciitoxines (Myrmeciinae)	47
27	3.3.	Les poneritoxines (Ponerinae)	52
28	3.4.	Les ectatotoxines	54
29	3.5.	Les pseudomyrmecitoxines	55
30	3.6.	Les myrmicitoxines	57
31	4. l	L'IMMUNITE DES INSECTES	61
32	4.1.	Immunité acquise vs. Immunité innée : définitions et application aux insectes	61
33	4.2.	Médiation par la réponse cellulaire	63
34	4.3.	Médiation par la réponse humorale	65
35	4.3.	1. La voie Toll	66
36	4.3.	2. La voie IMD	67
37	4.3.	3. Host Defense Peptides de Drosophila melanogaster et peptides de venin de Tetramorium	
38	bica	irinatum	69
39	5. (DBJECTIFS GENERAUX	70
40	СНАР	ITRE II : DIVERSITE MOLECULAIRE DE PEPTIDES DE VENINS DE FOURMIS MYRMICIN	IES 73
41	1. /	ARTICLE 1	79
42	2. /	ARTICLE 2	93
43	3. /	ARTICLE 3	105
44	СНАР	ITRE III : LIEN ENTRE LES TOXINES PEPTIDIQUES ET LA FONCTION IMMUNITAIRE	139

45	1. ET	UDE PRELIMINAIRE DU LIEN ENTRE LES PEPTIDES DU VENIN DE TETRAMORIUM	
46	BICARII	NATUM ET L'IMMUNITE INNEE DE LA FOURMI	140
47	2. LC	OCALISATION DES PEPTIDES EN DEHORS DES APPAREILS VULNERANTS	144
48	2.1.	Localisation des transcrits codant certains peptides de venin dans l'abdomen de T. bicarinatu	m 145
49	2.2.	Localisation de la Bicarinaline et du P17 dans l'abdomen de T. bicarinatum	146
50	3. RE	PONSE DES GENES CODANT LES PEPTIDES A UNE INFECTION BACTERIENNE	152
51	3.1.	Évaluation au niveau transcriptomique par la technique de qPCR	152
52	3.2.	Évaluation au niveau transcriptomique par la technique de la ddPCR	158
53	3.3.	Évaluation de la réponse au niveau protéique	161
54	4. M	ATERIEL ET METHODES	166
55	4.1.	Tetramorium bicarinatum : généralités et élevage	166
56	4.2.	Dissections	169
57	4.3.	Localisation des peptides en dehors des appareils vulnérants	170
58	4.3.1.	Localisation des transcrits	170
59	4.3.2.	Localisation de la Bicarinaline et du P17	172
60	4.4.	Etude de la réponse des gènes codant pour les peptides à une infection bactérienne	173
61	4.4.1.	Microbiologie et infection des fourmis par voie orale	173
62	4.4.2.	Etude au niveau transcriptomique	175
63	4.4.3.	Etude au niveau protéique	178
64	4.5.	Protocoles utilisés lors de l'étude préliminaire	179
65	4.5.1.	Première localisation des transcrits codant pour la Bicarinaline et le P17 en dehors de l'abdo	men
66		179	
67	4.5.2.	Première estimation de la réponse des gènes bicarinaline et p17 suite à une infection bactér	ienne
68		179	
69	4.5.3.	Extraction, traitement de l'ARN et rétrotranscription	179
70	4.5.4.	Amplification par PCR	179
71	4.5.5.	Protocole de qPCR	180

72	CONCLUSION GENERALE / PERSPECTIVES	181
73	REFERENCES BIBLIOGRAPHIQUES	185
74	SUPPLEMENTARY MATERIALS	207
75		

77		Liste des travaux
78		
79	Publi	cations :
80	>	Barassé, V.; Touchard, A.; Téné, N.; Tindo, M.; Kenne, M.; Klopp, C.; Dejean, A.;
81		Bonnafé, E.; Treilhou, M. The peptide venom composition of the fierce stinging ant
82		Tetraponera aethiops (Formicidae: Pseudomyrmecinae). Toxins (Basel). 2019, 11.
83	>	Touchard, A.; Aili, S.R.; Téné, N.; Barassé, V.; Klopp, C.; Dejean, A.; Kini, R.M.;
84		Mrinalini, M.; Coquet, L.; Jouenne, T.; et al. Venom peptide repertoire of the European
85		myrmicine ant Manica rubida: identification of insecticidal toxins. J. Proteome Res.
86		2020 , 19.
87		
88	Comr	nunications orales :
89	>	Barassé, V.; Touchard, A.; Téné, N.; Bonnafé, E.; Treilhou, M. Exploring the molecular
90		diversity of ant venoms reveals conserved toxin precursors and distinctive mature
91		peptides features among phylogenetic subfamilies. 19ème Colloque sur la Biologie de
92		l'Insecte (CBI), Juin 2019, Albi, France.
93	>	Barassé, V.; Touchard, A.; Téné, N.; Bonnafé, E.; Treilhou, M. Exploring the molecular
94		diversity of ant venoms reveals conserved toxin precursors and distinctive mature
95		peptides features among and within phylogenetic subfamilies. 30ème congrès de
96		l'Union Internationale de l'Etude des Insectes Sociaux (UIEIS) – section française.
97		Août 2019, Avignon, France.
98	>	Barassé, V. ; Touchard, A. Les fourmis possèdent-elles les antibiotiques de demain ?
99		Pause Café - Pause Musée - Muséum d'Histoire Naturelle de Gaillac. Septembre 2019.
100		Gaillac, France.
101	۶	Barassé, V. Explorer la diversité moléculaire des venins de fourmis. Flash'Conf
102		Mystères. Nuit européenne des chercheur-e-s. Septembre 2019, Albi, France.
103		
104	Poste	rs:
105	>	Barassé, V.; Touchard, A.; Téné, N.; Bonnafé, E.; Treilhou, M. Exploring the molecular
106		diversity of ant venoms reveals conserved toxin precursors and distinctive mature
107		peptides features among phylogenetic subfamilies. 21 ^{ème} réunion du Groupe Français
108		des Peptides et des Protéines (GFPP21), Mai 2019, Amboise, France.

Liste des figures et des tableaux

110

<u>Chapitre I : Etat de l'art</u>	
Figure 1 : Diversité taxonomique et fonctions primaires des venins.	15
Figure 2 : Exemples d'appareils vulnérants.	18
Figure 3 : Cycle sécrétoire classique de toxines protéiques.	20
Figure 4 : Cibles pharmacologiques de toxines protéiques isolées des venins.	22
Figure 5 : Exemples de mécanismes impliqués dans l'évolution des gènes codant les	25
toxines.	
Tableau I: Médicaments dérivés des venins approuvés par la FDA (Food Drug	27
Administration).	
Figure 6 : Approche de spectrométrie de masse dans le cadre de la détermination de la	31
composition des venins.	
Figure 7 : Méthodes de recherche des transcrits codant les toxines peptidiques à partir	33
de données de RNA-Seq.	
Figure 8 : Complémentarité des séquençages short et long reads dans l'assemblage de	35
novo d'un génome de référence.	
Figure 9: Méthodologie intégrative « vénomique » et implication des différentes	37
méthodes « -omiques » dans l'étude des toxines rentrant dans la composition des	
venins.	
Figure 10 : Alignements des précurseurs de myrmicitoxines du venin de Tetramorium	39
bicarinatum et séparation en superfamilles de précurseurs sur la base des régions prépro.	
Figure 11 : Cladogrammes des précurseurs de toxines peptidiques du venin de	41
Tetramorium bicarinatum.	
Figure 1 : Diversité spécifique des sous-familles de Formicidae.	42
Figure 13 : Glandes à venin et réservoir de la fourmi myrmicine Tetramorium	43
bicarinatum.	
Figure 14 : Paraponeratoxines contenues dans les venins de différents spécimens de	44
Paraponera clavata.	
Figure 15 : Myrmeciitoxines contenues dans le venin de <i>Myrmecia pilosula</i> .	46
Tableau II : Toxines peptidiques contenues dans les venins des fourmis du genre	48
Myrmecia.	
Figure 16 : Alignements de précurseurs de toxines peptidiques de venin	49
d'Hyménoptères sur la base des régions signal et propeptides.	
Figure 17 : Poneritoxines isolées du venin d'Anochetus emarginatus.	51
Figure 18 : Poneritoxines de type Kunitz et ICK issus du venin de Dinoponera	52
quadriceps.	

Figure 19 : Ectatotoxines retrouvées dans les venins d' <i>Ectatomma tuberculatum</i> et <i>E</i> .	53
brunneum.	
Figure 20 : Pseudomyrmecitoxines retrouvées chez <i>Pseudomyrmex triplarinus</i> et <i>P</i> .	55
penetrator.	
Figure 21 : Myrmicitoxines isolées des venins de <i>Myrmica rubra</i> et <i>Manica rubida</i> .	56
Figure 22 : Séquences et représentations 3D des peptides matures Bicarinaline et P17.	57
Figure 23 : Alignement des séquences des myrmicitoxines matures de Tetramorium	58
bicarinatum avec d'autres peptides de venins d'hyménoptères aculéates.	
Figure 24 : Motifs moléculaires associés aux pathogènes et aux lésions tissulaires	61
déclenchant la réponse immunitaire innée des insectes.	
Figure 25 : Réponses cellulaires exercées par les hémocytes des insectes lors d'une	62
infection microbienne.	
Figure 26 : Détails moléculaires de la voie de signalisation intracellulaire Toll dans le cas d'une infection bactérienne	65
Figure 27 · Détails moléculaires de la voie de signalisation intracellulaire IMD dans le	66
cas d'une infection bactérienne.	00
Figure 28 : Structures des précurseurs de Host Defense Peptides de l'hémolymphe de	67
Drosophila melanogaster et des toxines du venin de Tetramorium bicarinatum.	
Chapitre II : Diversité moléculaire de peptides de venins de fourmis myrmicines	
Figure 29 : Modèles d'études, positionnement dans la famille des Formicidae et détails	71
de leur écologie.	
Tableau III : Composition des peptidomes de venins de fourmis pseudomyrmecines et	74
myrmicines.	
Chapitre III : Lien entre les toxines peptidiques et la fonction immunitaire	
Figure 30 : Schéma général de l'anatomie interne d'une fourmi et des organes	135
composant le tube digestif et le système vulnérant.	
Figure 31 : Expression des gènes <i>bicarinaline</i> et <i>p17</i> dans différents organes contenus	135
dans l'abdomen de la fourmi Tetramorium bicarinatum.	
Figure 32 : Expression des gènes <i>dorsal</i> , <i>relish</i> , <i>bicarinaline</i> et <i>p17</i> .	136
Figure 33 : Expression des gènes pgrp-le, dorsal, bicarinaline, et p17.	137
Figure 34 : Expression des gènes rpl-18, actine, bicarinaline, p17, u3-Tb1a, u4-	140
<i>Tb1a</i> , <i>u5-Tb1a</i> , <i>u7-Tb1a</i> , <i>u8-Tb1a</i> , <i>u9-Tb1a</i> et <i>u16-Tb1a</i> .	
Figure 35 : Localisation de la Bicarinaline et du P17 dans les glandes à venin de	141
<i>Tetramorium bicarinatum</i> réalisée par immunohistochimie indirecte.	

Figure 36: Localisation de la Bicarinaline et du P17 dans les tubes digestifs de	141
Tetramorium bicarinatum réalisée par immunohistochimie indirecte.	
Figure 37 : Localisation de la Bicarinaline et du P17 dans les tubes de Malpighi de	142
Tetramorium bicarinatum réalisée par immunohistochimie indirecte.	
Figure 38: Localisation de la Bicarinaline et du P17 dans les corps gras de	143
Tetramorium bicarinatum réalisée par immunohistochimie indirecte.	
Figure 39 : Localisation de la Bicarinaline et du P17 dans les corps gras de	144
Tetramorium bicarinatum réalisée par immunohistochimie indirecte.	
Figure 40 : Cellules du corps gras de la fourmi Mycetarotes parallelus (Myrmicinae :	145
Attini).	
Figure 41 : Répartition des C _T moyens et ratio d'expressions $(2^{-\Delta\Delta C}_T)$ obtenus par qPCR	148
dans les glandes à venin de Tetramorium bicarinatum.	
Figure 42 : Répartition des C_T moyens et ratio d'expressions obtenus par qPCR dans	149
les tissus de Tetramorium bicarinatum saines ou infectées par Serratia marcescens.	
Tableau IV : Valeurs de rangs (W) et probabilités (P) obtenus suite aux tests de Mann-	150
Whitney exécutés entre les valeurs des C _T moyens des gènes <i>rpl-18, dorsal, relish, p17,</i>	
u3-Tb1a, u8-Tb1a, bicarinaline et u9-Tb1a.	
Tableau V : Valeurs de rangs (W) et probabilités (P) obtenus suite aux tests de Mann-	150
Whitney exécutés entre les ratios d'expression (i.e. $2^{-\Delta\Delta C}T$) des gènes de l'immunité	
(dorsal et relish) et codant pour les toxines du venin de Tetramorium bicarinatum (p17,	
u3-Tb1a, u8-Tb1a, bicarinaline et u9-Tb1a).	
Figure 43 : Comparaison des données brutes obtenues en qPCR et en ddPCR pour un	153
échantillon de glandes à venin.	
Tableau VI : Valeurs de rangs (W) et probabilités (P) obtenus suite aux tests de Mann-	153
Whitney exécutés entre les nombres de copies observées suite à une ddPCR pour les	
gènes rpl-18, relish, p17 et u3-Tb1a chez des Tetramorium bicarinatum saines ou	
infectées par Serratia marcescens.	
Figure 44 : Expressions des gènes rpl-18, relish, p17 et u3-Tb1a déterminées par	154
ddPCR dans différents organes de Tetramorium bicarinatum saines ou infectées par	
Serratia marcescens.	
Figure 45 : Localisation de la Bicarinaline et du P17 dans des glandes à venin de	156
Tetramorium bicarinatum des lots contrôle et infecté, réalisée par immunohistochimie	
indirecte.	
Tableau VII : Valeurs de la statistique t, des degrés de liberté et de la probabilité	157
obtenus suite aux tests t de Student, exécutés entre les intensités lumineuses mesurées	
pour les peptides Bicarinaline et P17 dans les organes de Tetramorium bicarinatum	
saines ou infectées par Serratia marcescens.	

Figure 46 : Intensité des signaux observés par immunohistochimie indirecte pour les		
peptides Bicarinaline et P17 dans des organes de Tetramorium bicarinatum saines ou		
infectées par Serratia marcescens.		
Figure 47 : Localisation de la Bicarinaline et du P17 dans des tubes de Malpighi de	158	
Tetramorium bicarinatum des lots contrôle et infecté, réalisée par immunohistochimie		
indirecte.		
Figure 48: Localisation de la Bicarinaline et du P17 dans des corps gras de	159	
Tetramorium bicarinatum des lots contrôle et infecté, réalisée par immunohistochimie		
indirecte.		
Figure 49 : Tetramorium bicarinatum (Hymenoptera : Formicidae).	161	
Figure 50 : Carte de répartition de <i>Tetramorium bicarinatum</i> .	162	
Figure 51 : Nid artificiel de Tetramorium bicarinatum.	163	
Tableau IIII : Couples d'amorces utilisés pour la PCR.	165	
Figure 52 : Microbiologie et infection par voie orale de la fourmi Tetramorium	168	
bicarinatum par la bactérie Serratia marcescens.		
Tableau IX : Amorces utilisées pour la qPCR.	170	
Tableau X : Couples d'amorces utilisés pour les PCR et la qPCR.	174	
Tableau XI : Couple d'amorces utilisé pour le gène pgrp-le en qPCR.	174	
Figure 53 : Caractéristiques structurales des familles de toxines peptidiques matures	176	
caractérisées dans les venins de fourmis myrmicines et pseudomyrmecine.		

113

Introduction générale

114 Avec plus de 220 000 espèces venimeuses décrites, les organismes venimeux représentent 115 environ 15% de la biodiversité animale actuelle (Schendel, Rash, Jenner, & Undheim, 2019). 116 Les venins sont des mélanges complexes constitués d'une multitude de molécules appelées 117 toxines (e.g. sels, polyamines, nucléosides, protéines, peptides), et constituent un trait adaptatif 118 très complexe. Le coût métabolique de la production de venin est tel qu'au cours de l'évolution, 119 seules les toxines les plus efficaces selon les contextes d'utilisations ont été sélectionnées 120 (Morgenstern & King, 2013). Les venins sont donc des bibliothèques naturelles de composés 121 bioactifs hautement optimisés. La plupart d'entre eux sont composés de peptides, petites 122 protéines dont la longueur maximale est comprise entre 50 et 100 acides aminés. L'étude des 123 peptides de venins d'animaux emblématiques tels que les serpents ou les cônes marins ont 124 d'ailleurs donné lieu au développement de médicaments actuellement commercialisés 125 (Pennington, Czerwinski, & Norton, 2018). Des nombreux animaux venimeux n'ont cependant 126 pas été étudiés. La nature et les propriétés de leurs venins demeurent ainsi inconnues et 127 inexploitées. C'est dans ce contexte que l'équipe d'accueil « Biochimie et Toxicologie des 128 Substances Bioactives » (EA-7417-BTSB) étudie les venins de fourmis. Le développement des 129 technologies dans les domaines de la transcriptomique et de la protéomique offre aujourd'hui 130 la possibilité d'explorer ces venins en détail. La caractérisation du venin de la fourmi 131 Tetramorium bicarinatum a mené à l'identification de toxines peptidiques qui, bien que 132 présentant des séquences matures divergentes, se classent seulement en 3 grandes familles de précurseurs. Certaines se sont révélées être décrites chez d'autres arthropodes venimeux, posant 133 134 la question de l'origine évolutive et des mécanismes impliqués dans la diversification des 135 toxines de venins de fourmis. Il est de plus apparu que les gènes codant certaines de ces toxines 136 s'expriment en dehors du système vulnérant, notamment dans des organes impliqués dans 137 l'immunité innée des insectes, interrogeant sur l'existence d'un lien entre la fonction venimeuse 138 et l'immunité innée de la fourmi à titre individuel. Ces résultats nous ont conduits à élaborer ce 139 travail de thèse qui a pour objectifs :

140 141 Apporter un premier aperçu de la diversité peptidique contenue dans les venins de fourmis myrmicines

Les études menées dans le cadre de ce doctorat ont été financées par un contrat doctoral
(ex-bourse MRT) ainsi que par le budget propre à l'équipe BTSB. Ce manuscrit se divise en
trois chapitres.

147 Le premier chapitre présente un état de l'art axé sur la fonction venimeuse dans le règne 148 animal et sur l'immunité innée des insectes. Dans une première partie, la répartition de ces 149 cocktails biochimiques dans les différents phyla ainsi que leurs différents contextes d'utilisation 150 d'un point de vue écologique seront exposés. La diversité de composition des venins en termes 151 de toxines protéiques sera décrite ainsi que leurs processus de synthèse et certains mécanismes 152 impliqués dans leur évolution. Le dernier point de cette partie montrera l'intérêt scientifique de 153 l'étude de ces toxines, et les applications en ayant résulté. Dans la seconde partie de l'état de 154 l'art, un bilan des méthodes utilisées dans le cadre de l'étude de la composition des venins de 155 nature peptidique sera effectué. A cette occasion, j'expliquerai en quoi le développement des 156 méthodes « omiques », et le traitement intégré des données en résultant, constituent une 157 avancée majeure pour l'étude de la composition de venins d'espèces négligées de par leur taille. 158 Cette stratégie sera notamment étayée par la description de l'approche intégrative vénomique 159 ayant permis la caractérisation du venin de la fourmi T. bicarinatum, modèle historique de 160 l'équipe BTSB. La troisième partie de ce chapitre présente une synthèse des toxines peptidiques 161 caractérisées jusqu'à présent dans les venins de fourmis. Dans ce bilan, je présenterai 162 l'ensemble des caractéristiques biochimiques de ces toxines matures, leurs activités biologiques 163 et la structure de leurs précurseurs. Je poursuivrai dans une quatrième partie en décrivant les 164 principaux mécanismes impliqués dans l'immunité innée des insectes. Dans ce contexte, les 165 voies de signalisation immunitaires les plus décrites seront présentées. Je décrirai également les 166 structures des précurseurs et les activités biologiques de certains peptides impliqués dans 167 l'immunité innée de Drosophila melanogaster. Ce chapitre se conclura par la présentation des 168 objectifs généraux de ce travail de thèse.

Le second chapitre s'intitule « Diversité moléculaire des peptides de venins de fourmis myrmicines » et présente les résultats relatifs à la caractérisation des profils peptidiques des venins de huit espèces de fourmis appartenant à différentes sous-familles et tribus phylogénétiques. J'introduirai ce chapitre en présentant les origines phylogénétiques et les écologies des modèles biologiques. Je dresserai ensuite un aperçu de la diversité moléculaire des toxines peptidiques contenues dans ces venins. Les résultats sont détaillés dans trois articles, dont un en cours de préparation. Le troisième chapitre est intitulé « Lien entre les toxines peptidiques et la fonction immunitaire » et présente une étude exploratoire du lien entre la fonction venimeuse et l'immunité innée de *T. bicarinatum*. Je décrirai dans un premier temps les résultats de l'étude préliminaire des lieux d'expression des gènes codant pour les deux peptides majoritaires de ce venin ainsi que leur réponse à une infection bactérienne. Je détaillerai ensuite ces mêmes paramètres, étendus à d'autres peptides du venin de cette fourmi dans le cadre de ce travail de thèse.

183 Enfin, ce manuscrit s'achèvera par un récapitulatif des principaux résultats et des
184 perspectives de poursuite d'étude.

185

188	Chapitre I : État de l'art
189	
190	1. La fonction venimeuse dans le règne animal : composition, évolution et intérêt
191	scientifique
192	1.1. Définition des venins et répartition dans le règne animal
193	Les venins sont par définition des mélanges de substances bioactives communément
194	appelées « toxines » telles que des protéines et d'autres composés (Ashwood, Norton,
195	Undheim, Hurwood, & Prentis, 2020; B. G. Fry et al., 2009; Rima et al., 2018; Senji Laxme,
196	Suranse, & Sunagar, 2019; Vassilevski, Kozlov, & Grishin, 2009). Sécrétés par des glandes
197	spécialisées et injectés activement via un système vulnérant, ils constituent de véritables
198	arsenaux biochimiques développés au cours de l'évolution (Casewell, Wüster, Vonk, Harrison,
199	& Fry, 2013).
200	Parmi les 9 millions d'espèces animales présentes sur Terre, plus de 200 000 produisent des
201	venins, dont les composants ont été sélectionnés durant 600 millions d'années d'évolution pour
202	une efficacité et une sélectivité optimale (Jimenez, Ikonomopoulou, Lopez, & Miles, 2017;
203	Zancolli & Casewell, 2019). Ces espèces sont réparties au sein de phyla majeurs tels que les
204	Chordés (reptiles, poissons, amphibiens, mammifères), les Échinodermes (étoiles de mer,
205	oursins), les Mollusques (cônes, pieuvres), les Annélides (sangsues), les Némertes, les
206	Arthropodes (arachnides, insectes, myriapodes) et les Cnidaires (anémones de mer, méduses,
207	coraux) (Casewell et al., 2013; Ménez, Stöcklin, & Mebs, 2006; Schendel et al., 2019; Zancolli
208	& Casewell, 2019). Les venins sont ainsi apparus de manière indépendante plus de 100 fois
209	dans une large gamme de taxons incluant au moins 8 phyla séparés (Figure 1) (Schendel et al.,
210	2019). Le pourcentage d'espèces venimeuses est très variable dans un même phylum ou une
211	même classe. Il est par exemple faible chez les mammifères où seules quelques espèces sont
212	concernées comme les ornithorynques, les taupes, les musaraignes ou encore les loris du genre
213	Nycticebus (Nekaris, Moore, Johanna Rode, & Fry, 2013; Schendel et al., 2019). Il est en
214	revanche égal à 100% chez les scorpions et les cnidaires.
215	Les venins sont donc omniprésents dans le règne animal et constituent des innovations
216	évolutives clés dans une large gamme de lignées phylogénétiques, notamment de par leurs
217	multiples fonctions (Figure 1) (B. G. Fry et al., 2009).
218	

219 *1.2. Fonctions des venins dans le règne animal*

Les fonctions les plus évidentes et communes des venins sont décrites dans des contextes de prédation et de défense (Schendel et al., 2019). Les serpents, araignées, scorpions et myriapodes utilisent par exemple leurs venins pour immobiliser ou tuer la proie avant de la consommer. *A contrario*, les abeilles et la plupart des poissons venimeux utilisent principalement leurs venins pour se défendre contre les prédateurs (Arbuckle, 2017).

Figure 1 : Diversité taxonomique et utilisations majoritaires des venins. Cladogramme illustrant la fréquence d'apparition des venins dans le règne animal. Les branches colorées indiquent les lignées présentant des organismes venimeux. Les branches rouges indiquent un rôle offensif des venins (prédation). Les branches bleues indiquent un rôle défensif. Les branches vertes en pointillés indiquent un rôle dans la compétition intraspécifique. Les points d'interrogations indiquent les taxons pour

231 lesquels aucune détermination de la nature de leur venin n'a été effectuée. Tiré de (Schendel et al.,
232 2019).

Néanmoins, d'autres fonctions ont été observées à travers le règne animal. Dans des contextes intraspécifiques, les ornithorynques mâles utilisent leurs éperons venimeux pour affronter d'autres mâles durant la saison de reproduction. Les scorpions mâles de plusieurs groupes taxonomiques injecteraient également une petite quantité de venin dans le corps de la femelle durant l'accouplement, ce qui produirait des effets sédatifs et aphrodisiaques (Arbuckle, 2017).

239 Dans des contextes inter-spécifiques, au-delà de la prédation immédiate, les venins peuvent 240 être utilisés dans la conservation des proies ou encore dans certains cas leur pré-digestion. 241 Ainsi, les taupes et les musaraignes injectent leur venin dans leurs proies afin de les paralyser 242 sans les tuer, les laissant immobilisées dans leurs terriers pour les consommer plus tard (Dufton, 243 1992). De manière similaire, certaines guêpes de la famille des Pompilidae paralysent des 244 tarentules pour pouvoir pondre leurs œufs sur ces dernières (= ectoparasitisme) (Petrunkevitch, 245 1926; F. X. Williams, 1956). Certains endoparasitoïdes utilisent leur venin pour transformer les 246 organismes en un nouvel habitat ou nurserie pour leur descendance lors de l'éclosion. A titre 247 d'exemple, la guêpe Nasonia vitripennis utilise son venin pour supprimer certaines fonctions immunitaires de son hôte de manière sélective, pour arrêter son développement et manipuler 248 249 l'environnement nutritionnel interne (Martinson et al., 2014). Concernant les cas de pré-250 digestion, certaines triatomes (Reduviidae) tels que Pristhesancus plagipennis possèdent des 251 venins paralysants et liquéfiants qui facilitent la prise de repas sanguin (Walker et al., 2017). Il 252 a également été observé une utilisation de venin en tant qu'herbicide chez la fourmi 253 Myrmelachista schumanni. Cette fourmi amazonienne injecte son venin composé d'acide 254 formique dans toutes les plantes présentes autours de sa plante hôte (myrmécophyte). Ce 255 comportement original tue les autres plantes et favorise ainsi le développement du 256 myrmécophyte dans une zone de monoculture appelée « jardins du Diable » (Frederickson, 257 Greene, & Gordon, 2005).

Outre la fonction de prédation, l'utilisation des venins dans des contextes particuliers de défense, comme la détoxication, a pu être observée. En effet, les fourmis *Nylanderia fulva* appliquent leurs venins composés d'acide formique directement sur leurs cuticules afin de contrer l'effet du venin de la fourmi de feu *Solenopsis invicta* (LeBrun, Jones, & Gilbert, 2014). Certains venins possèderaient également des propriétés antimicrobiennes (Yacoub, Rima, Karam, Sabatier, & Fajloun, 2020). Les guêpes *Polistes dominulus* se recouvrent de venin en 264 guise de protection contre les pathogènes (Turillazzi et al., 2006). Un autre exemple est celui 265 des abeilles Apis mellifera, A. cerana, A. dorsata et A. andreniformis. Ces quatre espèces 266 présentent non seulement des traces de venin sur leurs cuticules mais répartissent également 267 leurs venins respectifs dans les cires des nids. Outre l'utilisation classique de défense contre les 268 prédateurs et les pathogènes à titre individuel, le venin semble également être un composant de 269 l'immunité sociale pour ces espèces (Baracchi, Francese, & Turillazzi, 2011). Cette utilisation 270 particulière du venin a également été recensée chez la fourmi Formica paralugubris (Brütsch, 271 Jaffuel, Vallat, Turlings, & Chapuisat, 2017).

272 L'utilisation du venin en tant que désinfectant est également notée chez d'autres espèces de 273 Formicidae dans le cas où un individu est contaminé, notamment via des cas de toilettages 274 (auto-procuré, interindividuel entre adultes ou au couvain) en vue de limiter la propagation de 275 l'infection et pouvant mener au sacrifice de l'individu infecté (Cremer, 2019; Tragust, 2016). 276 Il a par exemple été montré que le blocage de l'ouverture des glandes à venin des ouvrières 277 Lasius neglectus résultait en la survie réduite des adultes et des larves lors d'une infection par 278 Metharhizium anisopliae (Allcock et al., 2017). Les ouvrières L. neglectus sont en effet 279 capables de repérer les larves infectées par le champignon et de les désinfecter en vaporisant 280 leur venin, tuant d'un seul coup le pathogène et la larve (Baracchi & Tragust, 2020; Pull et al., 281 2018; Tragust et al., 2013). Chez les fourmis, cette utilisation particulière du venin pour la 282 protection individuelle ou celle des congénères n'a néanmoins été décrite que chez des espèces 283 de Formicinae, dont les venins sont majoritairement composés d'acide formique (Baracchi & 284 Tragust, 2020).

285 Il est essentiel de noter que, si les venins peuvent servir différentes fonctions, ils peuvent 286 également être utilisés à titre multifonctionnel par la majorité des espèces venimeuses 287 (Schendel et al., 2019). En effet, les araignées, serpents, scorpions et myriapodes utilisent non 288 seulement leur venin dans des contextes de prédation mais l'emploient également pour se 289 défendre contre des prédateurs via des morsures ou piqures défensives (Schendel et al., 2019). 290 De plus, chez certains animaux, tels que le cône marin Conus geographus ou la punaise 291 Prithesancus plagipennis, il existe une production localisée du venin dont la composition est 292 dépendante du contexte de son utilisation. Cette production s'effectue soit de manière localisée 293 à l'intérieur d'un même canal venimeux chez C. geographus, soit dans des structures 294 anatomiques distinctes chez P. plagipennis (Dutertre et al., 2014; Walker, Mayhew, et al., 295 2018).

297 1.3. Production des venins et diversité des systèmes vulnérants

298 Selon les phyla d'animaux venimeux et l'utilisation de leurs venins, les systèmes vulnérants 299 présentent des morphologies variées. On distingue par exemple les crochets buccaux des 300 araignées, les aiguillons abdominaux des hyménoptères, les rostres piqueurs de certains insectes 301 ou encore les éperons des membres postérieurs des ornithorynques mâles, tous relatifs à une 302 administration par injection (Rollard, Chippaux, & Goyffon, 2015; Whittington & Belov, 303 2007). Les venins peuvent également être « projetés », comme chez le cobra cracheur Naja 304 nigricollis (Rivel et al., 2016), ou même appliqués directement sur la cible comme pour la 305 fourmi Myrmicaria opaciventris qui possède un aiguillon modifié en forme de spatule 306 (Gathalkar & Sen, 2018) (Figure 2). Dans tous les cas, ces appareils vulnérants sont associés à 307 des glandes spécialisées de type exocrine en charge de la production du venin. L'origine embryonnaire des cellules constituant les glandes à venin est, dans la quasi-totalité des cas, 308 309 ectodermique (Rollard et al., 2015).

310

311

Figure 2 : Exemples d'appareils vulnérants. (A) Éperon de membre postérieur d'ornithorynque mâle. (B)
Chélicères de l'araignée *Phidippus audax*. (C) Aiguillon modifié en forme de spatule de la fourmi

314 *Myrmicaria opaciventris* (Antweb, le 29/07/20). (**D**) Aiguillon d'*Apis mellifera*.

316 *1.4. Diversité moléculaire des venins : focus sur les venins de nature protéique*

317 Bon nombre de scientifiques s'accordent à dire que la nature et la diversité moléculaire des 318 venins reflètent souvent leurs fonctions. Par exemple, les venins dits défensifs, comme ceux 319 des poissons ou encore des abeilles, présenteraient une composition moléculaire simplifiée et 320 hautement conservée, provoquant une douleur immédiate et localisée chez le prédateur 321 (Casewell et al., 2013; J. O. Schmidt, 2019a; Walker, Robinson, et al., 2018; Ziegman & 322 Alewood, 2015). A contrario, les venins servant à la prédation seraient souvent plus complexes, 323 et variables dans leurs compositions et leurs effets physiologiques, en relation notamment avec 324 la spécialisation du régime alimentaire de l'animal venimeux (Casewell et al., 2013; Dutertre 325 et al., 2014; Jin et al., 2019; Michalek, Kuhn-Nentwig, & Pekar, 2019; Pla et al., 2017). Cette 326 affirmation reste cependant sujette à controverse, certaines données suggérant que différentes 327 molécules seraient trouvées chez des espèces d'un même genre pour tuer le même type de 328 proies, comme c'est le cas pour les serpents du genre Bothriechis (Pla et al., 2017). Dutertre et 329 ses collaborateurs ont également montré que les venins défensifs des cônes marins C. 330 geographus et C. marmoreus sont plus complexes en termes de composition que leurs venins 331 offensifs respectifs (Dutertre et al., 2014). Ainsi, d'autres études reliant la composition des 332 venins et leurs fonctions écologiques chez des modèles biologiques variés seraient nécessaires 333 pour amender ou réfuter cette affirmation (Schendel et al., 2019).

Selon les phyla d'animaux venimeux voire selon les espèces dans un même genre, la
composition d'un venin est variable. Certains facteurs tels que la provenance géographique, le
poids, la taille ou l'âge de l'animal peuvent également entrer en compte (Chippaux, Williams,
& White, 1991; Servent, 2016).

Parmi les venins les plus étudiés, ceux de serpents sont connus pour être riches en enzymes
(phospholipases A2, métalloprotéases, L-aminoacide oxidase) et autres protéines (Rima et al.,
2018). Les venins des cônes marins et des arthropodes (araignées, scorpions, myriapodes,
insectes) sont connus pour être riches en peptides, de petites protéines dont la longueur
maximale est comprise entre 50 et 100 acides aminés (Prashanth et al., 2016; Senji Laxme et
al., 2019).

344

345

1.4.1. Synthèse et maturation des toxines protéiques

La synthèse de toxines protéiques par les glandes spécialisées obéit à un cycle sécrétoire classique : un adressage des précurseurs en cours de synthèse au réticulum endoplasmique (RE) via une séquence signal majoritairement N-terminale, puis, après un passage par l'appareil de Golgi, une sécrétion apicale *via* l'exocytose des vésicules de sécrétion. Durant ce trafic 350 intracellulaire, les précurseurs subissent des modifications post-traductionnelles (PTMs) 351 variées incluant un ou plusieurs clivages protéolytiques qui aboutissent à la formation d'une 352 toxine mature (Figure 3). Ainsi, l'organisation des précurseurs est majoritairement constante : 353 une séquence signal hautement conservée à l'extrémité N-terminale, une région pro-peptide 354 intermédiaire, et une unique copie de la région mature de la toxine à l'extrémité C-terminale. Il 355 y a ensuite sécrétion de la toxine mature par clivage de la région prépro (Figure 3). Il existe des 356 modèles de production moins communs où un précurseur donne plusieurs toxines matures. 357 C'est par exemple le cas des latarcines-6 isolées du venin de l'araignée Lachesana tarabaevi 358 (Kozlov et al., 2006).

359 D'autres PTMs telles que les glycosylations, l'amidation C-terminale ou encore la
360 formation de ponts disulfures peuvent également survenir (Buczek et al., 2005).

361

362

Figure 3 : Cycle sécrétoire classique de toxines protéiques. Les précurseurs en cours de synthèse sont adressés au réticulum endoplasmique rugueux (RER) grâce à une séquence signal N-terminale. Le clivage de la région signal par la Signal peptidase permet la libération du précurseur dans la lumière du RER et la poursuite de la maturation jusqu'à la sécrétion. (A) Beaucoup de toxines sont synthétisées en tant que précurseurs inactifs, appelés propeptides. Leur activation est effectuée via le clivage de la région pro. (B) D'autres précurseurs de toxines ne présentent pas de région pro. La région mature est libérée dans la lumière du RER et la maturation se poursuit jusqu'à la sécrétion sans second clivage.

D'un point de vue pharmacologique, les cibles des venins incluent la plupart des voies
physiologiques et tissus accessibles *via* le système circulatoire (Casewell et al., 2013) (Figure
Une grande majorité de toxines peptidiques agissent sur les canaux ioniques en tant que

373 modulateurs. Elles affectent généralement le système nerveux et sont les composants actifs 374 principaux des venins d'araignées, des scorpions, des cônes marins et des serpents Elapidae 375 (Kalia et al., 2015; Utkin, 2015). Les neurotoxines contenues dans les venins d'araignées et de 376 scorpions agissent principalement sur des canaux ioniques voltage-dépendants, tandis que 377 celles contenues dans les venins de serpent ciblent des canaux chimio-dépendants comme les récepteurs nicotiniques de l'acétylcholine (Utkin, 2015). Chez les cônes marins, plusieurs 378 379 conotoxines modulent les canaux ioniques (calcium, sodium et potassium), les récepteurs 380 nicotiniques de l'acétylcholine, les transporteurs de la noradrénaline, les récepteurs N-méthyl-381 D-aspartate et les récepteurs à la neurotensine (Mir, Karim, Kamal, Wilson, & Mirza, 2016).

382 Les toxines protéiques d'un même venin vont agir de manière synergique contre leurs cibles 383 biologiques et causer des dysfonctionnements significatifs des systèmes nerveux, 384 cardiovasculaire et musculaire (Utkin, 2015). Ceci a notamment été prouvé pour le venin du 385 scorpion Mesobuthus eupeus, dont les neurotoxines, caractérisées comme ciblant les canaux 386 sodiques voltage-dépendants, augmentent l'efficacité contre des bactéries du peptide Meucin-387 49 contenu dans le même venin (Gao, Dalziel, Tanzi, & Zhu, 2018). King et ses collaborateurs 388 ont également démontré que la toxicité du venin de *Vespula vulgaris* (Hymenoptera : Vespidae) 389 requérait l'action synergique de deux composés venimeux, la phospholipase A1 et la toxine 390 peptidique Mastoparane (T. P. King, Jim, & Wittkowski, 2003).

392 Figure 4: Cibles pharmacologiques de toxines protéiques isolées des venins. (a) Les numéros 393 représentent les récepteurs, ciblés par différentes toxines peptidiques, impliqués dans le système de 394 coagulation sanguine. (b) Les numéros représentent les récepteurs du système nerveux ciblés par des 395 toxines peptidiques. Schéma tiré de (Casewell et al., 2013).

1.4.2. Évolution des toxines protéiques de venins – Mécanismes impliqués

398 D'un point de vue évolutif, les venins sont des outils écologiques multifonctionnels avec 399 de multiples toxines assurant une ou plusieurs fonctions et formant ensemble un trait adaptatif 400 très complexe (Schendel et al., 2019). En effet, de par leurs multiples apparitions au sein du 401 règne animal, les venins procurent un avantage adaptatif à l'organisme qui les produit, quel que 402 soit le contexte de leur utilisation (Casewell et al., 2013; Rollard et al., 2015; Schendel et al., 403 2019). Ainsi, les toxines composant les venins sont sélectionnées et optimisées au cours de 404 l'évolution.

Le modèle classique expliquant l'origine des toxines implique des évènements de recrutements de gènes codant des protéines impliquées dans des processus physiologiques clés de l'organisme. Les gènes les codant seraient ainsi sélectivement exprimés dans les glandes à venin (B. Fry, 2005; B. G. Fry et al., 2009; Zancolli & Casewell, 2019).

409 Selon Fry (2009), les protéines recrutées de manière convergente en tant que toxines
410 partagent plusieurs caractéristiques :

411 i. Elles proviennent d'une protéine ancestrale sécrétée.

- 412 ii. Elles appartiennent à des familles de protéines rencontrées dans différentes fonctions
 413 métaboliques. Ainsi, les homologues effectuent des réactions biochimiques identiques
 414 ou très similaires.
- 415 iii. Leur structure tertiaire est stable, notamment grâce à la présence de plusieurs ponts
 416 disulfures.

417 Dans la plupart des cas, les gènes qui les codent ont été dupliqués de multiples fois pour 418 obtenir des familles multigéniques. Ces phénomènes de duplication sont généralement suivis 419 de mutations entraînant des néofonctionnalisations et des délétions de certaines copies, ou 420 rendant ces copies non-fonctionnelles (i.e. pseudogènes). La nouvelle famille multigénique de 421 toxines préserve souvent la structure moléculaire de la protéine ancestrale (y compris la 422 structure tertiaire). En revanche, les résidus fonctionnels en dehors de la structure moléculaire 423 de base sont modifiés, permettant l'acquisition de nouvelles activités (B. G. Fry et al., 2009). 424 Un exemple typique de famille multigénique parmi les plus étudiées est celui des 425 phospholipases A2 (PLA2s) retrouvées dans les venins de serpents. Les PLA2s de type IB 426 proviennent du pancréas tandis que celles du type II_A proviennent du liquide synovial (B. Fry, 427 2005). L'activité biologique des protéines ancestrales réside dans l'induction de la libération de 428 l'acide arachidonique alors que celle de leurs dérivés consiste en des propriétés neurotoxiques 429 et antiplaquettaires (B. Fry, 2005). La structure des gènes de PLA₂s du groupe II a été 430 particulièrement étudiée chez des espèces de Viperidae, révélant une conservation des régions 431 non-codantes ainsi qu'une diversification des exons codant les protéines matures (Kordis &
432 Gubensek, 2000). Le haut degré de conservation des introns, des régions flanquantes et non433 traduites ainsi que des régions « signal » indiquent que ces gènes sont issus des duplications et
434 divergences d'un seul gène ancestral (Kordis & Gubensek, 2000).

435 Les enzymes PLA₂s ont également été recrutées dans le venin de nombreux organismes et 436 présentent une variété de nouvelles activités, de Apis dorsata (Hymenoptera : Apidae) à 437 Adamsia carciniopados (Actiniaria : Hormathiidae) (B. Fry, 2005). Ce phénomène d'évolution 438 convergente peut être observé d'un point de vue structural mais également fonctionnel. Par 439 exemple, les toxines de type Kunitz issues du venin d'anémone de mer possèdent la même 440 activité inhibitrice sur les canaux potassiques que les peptides du même nom dérivés des venins 441 des serpents du genre Dendroaspis (Schweitz et al., 1995). Ces toxines ont été recrutées de 442 manière indépendante dans les venins de cnidaires, de cônes marins, d'insectes, de scorpions, 443 de reptiles et d'araignées et constituent donc un exemple d'évolution convergente en termes de 444 cibles biologiques (Casewell et al., 2013). Un autre exemple est celui des défensines, des 445 peptides riches en cystéines avec des propriétés antimicrobiennes ayant été identifiées chez la 446 plupart des organismes et faisant partie intégrante du système immunitaire (Silva, Gonçalves, 447 & Santos, 2014). Ces molécules ont été classées selon l'arrangement tridimensionnel des ponts disulfures en α -, β -, θ - et α/β -défensines. Des peptides de structure similaire à celle des β -448 449 défensines ont été retrouvés dans les venins d'ornithorynque, de scorpions et de reptiles (B. G. 450 Fry et al., 2009). Whittington et ses collaborateurs (2008) ont d'ailleurs montré que les peptides 451 de venin d'ornithorynque de type défensine avaient évolué à partir des β -défensines impliquées 452 dans l'immunité innée. En effet, les gènes codant ces peptides de venin sont situés sur le même 453 chromosome que leurs paralogues impliqués dans l'immunité innée. De plus, leurs promoteurs 454 présentent 89 à 94% d'identité et les arrangements des cystéines des peptides matures sont 455 similaires (Whittington et al., 2008).

D'autres mécanismes, tels que le phénomène de cooptation de gènes à copie unique, où une nouvelle utilité émerge pour un gène préexistant ou nouvellement recruté, sans forcément de duplication suivie de néofonctionnalisation (Martinson, Mrinalini, Kelkar, Chang, & Werren, 2017), ou l'épissage alternatif contribueraient également à l'ensemble des mécanismes impliqués dans l'acquisition de gènes codant pour des toxines (Zancolli & Casewell, 2019) (Figure 5). Tous ces mécanismes ont généré la grande diversité génétique et fonctionnelle observée aujourd'hui dans les venins.

Figure 5 : Exemples de mécanismes impliqués dans l'évolution des gènes codant les toxines. (A) Duplication d'un gène impliqué dans une fonction physiologique et néofonctionnalisation du gène dupliqué. (B) Épissage alternatif résultant en des ARN messagers codant respectivement pour une protéine physiologique et une toxine. (C) Cooptation de gènes avec ou sans duplication. Des gènes peuvent être cooptés pour générer des nouveautés physiologiques via (i) le changement de leurs motifs de régulation, (ii) le changement de fonctions des protéines qu'ils codent ou (iii) les deux.

471 *1.5. Intérêt scientifique de l'étude des venins*

472 L'étude des venins a tout d'abord été motivée par deux aspects principaux : l'un concernant
473 la conception d'antivenins, l'autre concernant la recherche de nouvelles molécules bioactives
474 d'intérêts en santé humaine (anti-cancéreux, antibactériens, immunothérapie) et en agronomie
475 (bioinsecticides).

476 Dans le cadre de la recherche pour le développement d'antivenins, la majorité des études a 477 été réalisée sur des espèces constituant un problème de santé publique, comme les serpents, les 478 scorpions, les cônes ou encore les araignées. En effet, une meilleure connaissance générale des 479 venins est essentielle au développement de protections contre les envenimations (Chippaux et 480 al., 1991; Ménez et al., 2006). Ce premier aspect de la recherche sur les animaux venimeux a 481 particulièrement concerné les serpents et les scorpions. Encore aujourd'hui, les cas 482 d'envenimations constituent un problème de santé publique d'envergure avec plus de 100 000 483 morsures de serpents au niveau mondial chaque année (Knudsen et al., 2019). Les 484 envenimations par les scorpions représentent aujourd'hui entre 30-200 cas / 100 000 habitants 485 rien que pour le genre Titvus en Amérique du Sud, avec des taux de mortalités relativement 486 élevés (Borges et al., 2020). Les araignées ne font pas exception, même si les cas 487 d'envenimations sont plus rares et localisés avec par exemple 3 000 à 5 000 cas recensés chaque 488 année en Australie (Matsumura et al., 2018). La nécessité de production d'antivenins s'est fait 489 ressentir essentiellement de par les actions toxiques (neurotoxiques, nécrolytiques, 490 hémolytiques, inflammatoires, etc.) de ces venins sur les populations locales (Borges et al., 491 2020; Judge, Henry, Mirtschin, Jelinek, & Wilce, 2006; Knudsen et al., 2019; D. J. Williams, 492 Habib, & Warrell, 2018). Néanmoins, la production d'antivenins suffisamment efficaces n'est 493 pas un processus acquis et reste toujours d'actualité, du fait de la haute variabilité de 494 composition des venins, que ce soit en fonction de la zone géographique, de l'espèce voire de 495 l'individu (Chippaux et al., 1991).

496 Dans le cadre de la recherche de nouvelles molécules bioactives, une attention particulière 497 a été portée aux toxines peptidiques (Pennington et al., 2018). Elles présentent en effet 498 l'avantage d'être peu rémanentes dans l'environnement tout en restant efficaces sur une large 499 gamme de cibles allant des canaux ioniques aux pathogènes. De plus, elles agissent en général 500 à très faible dose, à l'échelle du nano- voire du pico-molaire, concentration active reflétant 501 directement l'affinité et la sélectivité de la toxine pour sa cible pharmacologique (Wulff, 502 Christophersen, Colussi, Chandy, & Yarov-Yarovoy, 2019). Actuellement, sept médicaments 503 dérivés de toxines peptidiques de venins ont été approuvés par la «Food and Drugs 504 Administration » (FDA U.S.) et sont sur le marché (Tableau I). Les deux exemples les plus

connus sont le Captopril[®] et le Prialt[®] dérivés respectivement de toxines peptidiques du 505 506 Bothrops jararaca et de Conus magus, et agissant contre l'hypertension artérielle et en tant 507 qu'antidouleur (G. F. King, 2011) (Tableau I). La majorité des médicaments commercialisés 508 agissent au niveau du système circulatoire avec deux d'entre eux commercialisés en tant 509 qu'anticoagulants (Aggrastat[®] et Integrilin[®], développés à partir de désintégrines de venins de 510 serpents) ou en tant qu'agent anti-plaquettaire (Refludan® et Angiomax®, développés à partir 511 de l'hirudine de la sangsue Hirudo medicinalis). Le dernier médicament dérivé de toxines 512 peptidiques de venins est actuellement utilisé dans le traitement du diabète de type II en tant 513 qu'hypoglycémiant et a été développé à partir d'un peptide issu du venin d'Heloderma 514 suspectum (i.e. monstre de Gila) (Pennington et al., 2018) (Tableau I).

515

516 Tableau I : Médicaments dérivés des venins approuvés par la FDA (Food Drug Administration), d'après

517 Pennington et al. (Pennington et al., 2018). ACE : enzyme de conversion de l'angiotensine ; Cav: canaux

518 calciques voltages-dépendants.

Médicament	Organisme	Espèce	Molécule	Effet	
Cantonril®	Serpent	Bothrops jararaca	Bradykinin-potentiating	Inhibitour de l'ACE	
Captopin®			Peptide	Initioneur de l'ACE	
Aggrastat ®	Serpent	Echis carinatus	Désintégrine	Anticoagulant	
Integrilin ®	Serpent	Sistrurus miliarius	Désintégrine	Anticoagulant	
Refludan ®	Sangsue	Hirudo medicinalis	Hirudine	Inhibiteur de la thrombine	
Angiomax ®	Sangsue	Hirudo medicinalis	Hirudine	Inhibiteur de la thrombine	
D-:-14 @	Câna manin	C	o	Bloqueur de canaux Ca _v	
Prialt ®	Cone marin	Conus magus	ω-conotoxine MIVII-A	neuronaux (antidouleur)	
Byetta ®	Monstre de Gila	Heloderma suspectum	Glucagon-Like Peptide	Hypoglycémiant	

519

D'autres peptides sont actuellement en phases d'essais cliniques. Les chlorotoxines, 520 521 issues du venin du scorpion Leiurus quinquestriatus hebraeus, initialement connues pour 522 inhiber les canaux chlorures, possèdent également une haute affinité pour les cellules tumorales. 523 Elles sont actuellement en court de développement pour le traitement radiochimique des 524 cellules malignes ainsi qu'en tant qu'outils de diagnostics in vivo des cancers par imagerie 525 (Pennington et al., 2018). Dans le même ordre d'idée, le peptide SOR-C13 issu du venin de la 526 musaraigne Blarina brevicauda bloque l'influx de calcium activant les récepteurs TRPV6 (pour 527 Transient Receptor Potential Vanilloid calcium channel subtype 6), particulièrement impliqués 528 dans la tumorogenèse. Les premiers tests sur des cellules cancéreuses ovariennes ont montré que la partie C-terminale de ce peptide inhibe ce récepteur avec une IC₅₀ (Inhibitory 529 Concentration) de 14 nmol.L⁻¹ et entraîne ainsi la mort cellulaire (Pennington et al., 2018). Le 530

peptide ShK issu du venin de l'anémone de mer *Stichodactyla helianthus* inhibe avec une haute affinité (10 pmol.L⁻¹) les canaux K_v 1.3, directement impliqués dans l'activation d'un sousensemble de lymphocytes T connus comme étant effecteurs de la mémoire cellulaire (Pennington et al., 2018). Il en résulte une diminution de la prolifération cellulaire et une suppression de la production d'interleukines de type 2 (Beeton et al., 2005; Jimenez et al., 2017), effets pouvant faire de ce peptide une molécule permettant de traiter les maladies autoimmunes.

Plusieurs autres toxines de venins sont en phase d'essais précliniques, notamment en tant qu'antidouleurs. Ainsi, la protoxine-II, isolée du venin de la tarentule *Thrixopelma pruriens* inhibe les canaux Na_v1.7 avec une IC₅₀ de 300 pM, et les α -conotoxines sont des antagonistes des récepteurs nicotiniques $\alpha 9\alpha 10$ nAChRs. Ces peptides sont actuellement développés pour la prévention des douleurs neuropathiques chroniques induites par la chimiothérapie (Pennington et al., 2018).

544 D'autres peptides de venins, qualifiés « d'antimicrobiens », exercent une action 545 cytotoxique directe ou cytostatique sur un panel de microorganismes (Mahlapuu, Håkansson, 546 Ringstad, & Björn, 2016; Zasloff, 2002). A titre d'exemple, Coutinho das Neves et al. (2019) 547 ont récemment montré l'action bactériostatique de peptides de venins de guêpes et de scorpions 548 contre Acinetobacter baumanii, une bactérie Gram négative résistante aux antibiotiques et 549 responsable d'infections nosocomiales en milieu hospitalier (Coutinho das Neves, Mortari, 550 Ferroni Schwartz, Kipnis, & Junqueira-Kipnis, 2019). Bon nombre d'études démontrent 551 l'action antimicrobienne de toxines de venin. Cependant, aucune n'est encore entrée en phase 552 de développement clinique pour le traitement d'infections bactériennes. En effet, malgré 553 l'efficacité in vitro des peptides antimicrobiens, leur usage est limité en raison de leur faible 554 biodisponibilité in vivo due à leur instabilité, leur cytotoxicité ainsi que leur coût de production 555 (Moreno & Giralt, 2015).

556 En dehors du domaine thérapeutique, les toxines de venins peuvent également servir 557 pour des applications dans le domaine agronomique. En effet, les peptides dérivés de venins de 558 prédateurs d'insectes entomophages (e.g. scorpions, araignées) font l'objet d'un intérêt de plus 559 en plus grand pour la recherche d'alternatives naturelles et sélectives aux pesticides. Le peptide 560 ω-HXTX-Hv2a, isolé à partir du venin de Hyadronyche versuta, possède par exemple une 561 activité inhibitrice élevée de canaux calciques voltage-dépendant d'invertébrés. A partir de ce 562 peptide, la compagnie Vestaron Corporation a développé un analogue peptidique inhibant les 563 canaux calciques voltage-dépendant et potassiques calcium-dépendant des insectes, nommé 564 ω/κ-HXTX-Hv1a. Il présente ainsi une forte activité insecticide contre une large gamme d'insectes ravageurs de cultures, tout en ayant une toxicité moindre pour les ouvrières *Apis mellifera* par ingestion ($DL_{50} > 100\mu g/abeille$) (G. F. King, 2019; Nakasu et al., 2014; Powell et al., 2020). Depuis 2017, cette toxine modifiée est commercialisée comme agent de biocontrôle (Spear-T[®]) (Corporation, n.d.).

569 Certaines toxines constituent également des outils pour l'étude fondamentale de systèmes 570 physiologiques complexes (nerveux, cardiovasculaire, hormonal, immunitaire) (Ménez et al., 571 2006). En effet, de par leurs actions, les toxines peuvent jouer un rôle crucial dans la 572 compréhension de ces processus physiologiques. Par exemple, la tétrodotoxine est couramment 573 utilisée pour l'étude des canaux sodiques voltage-dépendant (Clark et al., 2019). D'autres 574 toxines, comme celles formant des pores membranaires, ont également aidé à élucider la 575 structure et la fonction des membranes cellulaires, des protéines membranaires et des voies de 576 signalisations transmembranaires (Clark et al., 2019). La melittine issues du venin d'Apis 577 mellifera et les actinoporines des venins d'anémones de mer ont notamment permis de 578 déterminer des mécanismes de rupture des membranes cellulaires (Akbari et al., 2018; Rojko, 579 Dalla Serra, Maček, & Anderluh, 2016). Il est également essentiel de noter que les organismes 580 venimeux sont des modèles d'intérêt pour l'étude de points clés relatifs à la biologie évolutive 581 et moléculaire. Les toxines de venin constituent en effet des modèles de choix dans l'étude des 582 processus évolutifs impliquant l'acquisition de nouvelles fonctions génétiques ou les 583 dynamiques de recrutements convergents de protéines (Casewell et al., 2013; Zancolli & 584 Casewell, 2019).

585 2. Méthodes d'étude de la composition des venins : focus sur les venins peptidiques

586 Un des plus grands défis des chercheurs travaillant sur les venins reste la caractérisation en 587 termes de séquences et de structures des différentes toxines les composant. D'un point de vue 588 historique, les premières études s'effectuaient majoritairement sur des toxines isolées via des 589 méthodes de biochimie, telle que l'électrophorèse et la chromatographie liquide haute 590 performance (en anglais High Performance Liquid Chromatography – HPLC). Les structures 591 primaires, secondaires et tertiaires des toxines ainsi isolées et purifiées étaient ensuite 592 caractérisées par différentes méthodes telles que la spectrométrie de masse, la dégradation 593 d'Edman, la Résonnance Magnétique Nucléaire (RMN) et la cristallographie aux rayons X 594 (Shin, Lee, & Lee, 2008; Wilson & Daly, 2018; Yee et al., 2005). L'inconvénient de ces trois 595 dernières méthodes est qu'elles requièrent une quantité importante de toxine purifiée et donc 596 de venin brut de départ (Himaya & Lewis, 2018). Elles sont peu adaptées pour l'étude du venin 597 d'espèces de petites tailles, pour lesquelles il est difficile de récolter une grande quantité de598 venin.

599 L'étude de la composition des venins de ce type d'organismes est désormais un domaine 600 de recherche en pleine expansion grâce à une méthodologie intégrative appelée « vénomique ». 601 Elle consiste en l'étude de la composition globale des venins, par l'utilisation à large échelle de 602 différentes méthodes « -omiques » (e.g. génomique, transcriptomique, protéomique) et le 603 croisement des données obtenues via des outils bioinformatiques (Wilson & Daly, 2018). La 604 combinaison de ces méthodes, couplées aux grandes avancées technologiques dans chacune 605 d'entre elles permet d'obtenir rapidement une vision complète de la composition des venins, 606 même à partir de faibles quantités.

607

608 2.1. Protéomique appliquée à la vénomique

La fraction protéique est généralement la fraction dominante des venins d'arthropodes (Daly & Wilson, 2018; dos Santos-Pinto, Perez-Riverol, Musacchio-Lasa, & Palma, 2018; Senji Laxme et al., 2019; Walker, Robinson, et al., 2018). Les approches protéomiques sont donc des outils indispensables à leur étude. Elles permettent en effet d'analyser les toxines protéiques sécrétées dans le venin et constituent donc une approche complémentaire aux approches transcriptomiques et génomiques, qui apportent une vision globale des produits des gènes, qu'ils soient sécrétés ou non.

616 Les approches majoritairement utilisées sont les méthodes associées à la spectrométrie de 617 masse (MS) de par leur rapidité d'analyse, leurs hautes sensibilité et résolution. Ces approches 618 nécessitent désormais une moindre quantité de venin (e.g. quelques nanogrammes) et 619 permettent surtout une caractérisation rapide et complète d'un peptidome pour un coût réduit 620 (e.g. 150€ par échantillon) (Wilson & Daly, 2018). La MS est une technique d'analyse 621 permettant de détecter et d'identifier des molécules par mesure de leur masse, ainsi que de 622 caractériser leur structure chimique. Son principe réside dans la séparation en phase gazeuse de 623 molécules chargées (ions) en fonction de leur rapport masse/charge (m/z). Les venins étant par 624 définitions des mélanges de toxines, il est nécessaire de séparer ces toxines par une 625 chromatographie liquide à haute performance (HPLC) avant le passage dans le spectromètre de 626 masse (ESI-LC-MS). Ce premier passage permettra d'obtenir l'ensemble des masses présentes 627 dans l'échantillon injecté ainsi que leur abondance. Par la suite, il est également possible de 628 déterminer la structure primaire des toxines peptidiques (i.e. séquences d'acides aminés) via 629 des méthodes de fragmentation suivies d'une seconde analyse MS, appelée séquençage de novo 630 ou spectrométrie de masse en tandem (couramment nommée MS/MS) (Figure 6). D'autres
- 631 stratégies liées à la MS peuvent aussi être employées à large échelle pour déterminer la structure
- 632 primaire des toxines, telles que la digestion enzymatique d'un venin suivie d'une LC-MS/MS.
- 633 Ces méthodes nécessitent néanmoins l'utilisation de données transcriptomiques pour confirmer
- 634 les séquences des toxines, en levant les incertitudes liées aux amino acides isobares, à certaines
- 635 modifications post-transcriptionnelles, voire à quelques modifications artéfactuelles.

637 Figure 6 : Approche de spectrométrie de masse dans le cadre de la détermination de la composition des
638 venins.

639 La MS permet également d'identifier les modifications post-traductionnelles (PTMs pour 640 Post-Translational Modifications), telles que les glycosylations via le choix de différentes 641 techniques de fragmentation (Mechref, 2012), ou encore en procédant à une 642 réduction/alkylation du venin brut ou à une digestion enzymatique pour identifier la présence de ponts disulfures et leurs connectivités (Walker, Robinson, Hamilton, Undheim, & King, 643 644 2020). D'autres techniques nécessitent un travail sur les toxines isolées et purifiées. La 645 dégradation d'Edman permet par exemple de déterminer la structure primaire d'une toxine. La 646 RMN fournit des informations sur la connectivité des ponts disulfures et plus généralement sur 647 la structure tridimensionnelle d'une toxine (Himaya & Lewis, 2018; Shin et al., 2008; Yee et 648 al., 2005).

649

650 *2.2. Transcriptomique appliquée à la vénomique*

L'étude du transcriptome permet d'accéder à la séquence des transcrits matures, au patron
 d'expression spatial et temporel des gènes ainsi qu'à leur niveau d'expression. Les objectifs

principaux des méthodes transcriptomiques sont (i) de construire un catalogue de tous les transcrits pour un organisme ou un tissu donné (i.e. transcriptome de référence), (ii) d'établir la structure et l'organisation de ces transcrits (e.g. extrémités 5'-3' ; prédiction de leurs six cadres de lecture (ORFs pour Open Reading Frames) ; détermination des motifs d'épissage si génome de référence disponible), ainsi que (iii) de quantifier tout changement de niveau d'expression des transcrits sous différentes conditions (i.e. RNA-seq en différentiel, si génome ou éventuellement transcriptome de références disponibles) (Wilson & Daly, 2018).

Actuellement, la méthode transcriptomique la plus courante appliquée à la vénomique fait 660 661 tout d'abord intervenir une méthode de séquençage qui implique les plateformes de séquençage 662 NGS « short-reads » (Cf. partie 2.3) et appelée RNAseq. Néanmoins, le séquençage ne 663 s'effectue pas directement sur le brin source d'ARN. En effet, de l'ADN complémentaire 664 (ADNc) est généré par transcription inverse. L'ADNc est ensuite préparé en librairie via une 665 amplification par réaction de polymérisation en chaîne (PCR). Ainsi, les limites du RNAseq 666 sont celles rencontrées pour les séquençages NGS, auxquelles s'ajoute le taux d'erreur de la 667 transcription inverse. De plus, les réactions sont directement gouvernées par la processivité de 668 la Taq Polymérase impliquée dans la PCR pour la préparation de la librairie, c'est-à-dire la 669 capacité de l'enzyme à catalyser des réactions successives sur une même molécule sans la 670 relâcher (Wilson & Daly, 2018). Il existe également d'autres biais dus aux méthodes 671 d'assemblage des données brutes (i.e. reads) en séquences nucléotidiques continues et 672 ordonnées (i.e. contigs), pour lesquelles on distingue différentes approches : de novo ou via un 673 alignement sur un génome de référence (i.e. mapping). L'assemblage via mapping sur génome 674 de référence s'effectue classiquement pour des espèces modèles et attribue les reads 675 directement aux gènes référencés. A contrario, l'assemblage de novo d'un transcriptome ne 676 nécessite pas obligatoirement d'information « externe », bien qu'il y ait possibilité d'utiliser 677 des bases de données de protéines référencées de l'organisme modèle ou d'un organisme 678 proche. Ce type d'assemblage est en conséquence utilisé pour les espèces pour lesquelles il 679 n'existe pas de génome de référence (Figure 7), et représente d'ailleurs le point de départ dans 680 la construction d'un transcriptome de référence. Le RNAseq est actuellement le plus utilisé, du 681 fait de son coût (environ 350 € / échantillon) et de son accessibilité pour l'étude d'espèces 682 venimeuses non modèles. L'assemblage de novo s'effectue en plusieurs étapes impliquant une 683 normalisation des reads suivie de leur fusion en contigs. De nombreuses étapes de corrections 684 se succèdent, incluant notamment l'alignement des reads sur les contigs précédemment générés 685 afin de corriger les séquences. Ce type d'assemblage présente donc des biais dus à la variabilité

des données brutes (Cabau et al., 2017; Korpelainen, Tuimala, Somervuo, Huss, & Wong,
2015).

688 Dans le contexte de la vénomique, l'annotation des transcriptomes aide à identifier les 689 protéines exprimées dans les glandes à venin. Les études transcriptomiques des glandes à venins 690 ne donnent néanmoins accès qu'aux séquences des transcrits et à leurs ORFs potentiels. La 691 recherche d'ORFs sur les transcrits permettra ensuite de prédire les séquences des précurseurs 692 de toxines peptidiques (Figure 7). La qualité de cette prédiction dépend directement de celle de 693 l'assemblage, et peut diminuer notamment dans le cas des séquences répétées, et des contigs 694 trop courts. Ces derniers peuvent en effet contenir des ORFs incomplets. Les méthodes 695 transcriptomiques seules ne permettent pas de prédire toutes les PTMs que subissent les 696 précurseurs. Il est ainsi nécessaire de combiner les données transcriptomiques avec les données 697 protéomiques.

Figure 7 : Méthodes de recherche des transcrits codant les toxines peptidiques à partir de données de RNASeq. Les données brutes peuvent être assemblées selon deux méthodes : un alignement sur un génome de
référence ou *de novo*. La recherche d'Open Reading Frames (ORFs) sur les transcrits permet de prédire les
séquences des précurseurs de toxines.

703

704 *2.3. Génomique appliquée à la vénomique*

Le domaine de la génomique n'a fait son entrée que très récemment dans la vénomique,
notamment en raison du coût de séquençage (Himaya & Lewis, 2018) (e.g. environ 7 000 €
pour un organisme eucaryote). La connaissance du génome peut en effet aider à l'analyse de la

708 composition des venins peptidiques puisque ces composés sont des produits directs des gènes 709 (Babb et al., 2017). Le génome d'une espèce venimeuse contient les informations codantes et 710 non-codantes, pour chaque toxine protéique et peptidique qu'elle soit exprimée ou non. Son 711 séquençage permet donc de confirmer les séquences des toxines, de détecter des variants dus à 712 des épissages alternatifs et peut également aider à l'assemblage des données de RNAseq. Les 713 données génomiques donnent de plus des informations concernant les gènes codant les toxines 714 telles que leur structure, leur régulation, leur positionnement sur les chromosomes, permettant 715 de déterminer les mécanismes impliqués dans la diversification des toxines de venins.

Actuellement, les séquençages sont réalisés majoritairement *via* l'utilisation des
technologies de « nouvelle-génération » (NGS, pour Next-Generation Sequencing). Ces
technologies sont subdivisées en deux catégories : les séquençages « short-reads » et « longreads » (Wilson & Daly, 2018) (Figure 8).

Le séquençage « short-reads » fait intervenir les plateformes Illumina (Hi-Seq, Mi-Seq, etc.) et présente un taux d'erreur bas (< 5 %) en plus de fournir un génotypage précis dans les régions contenant des séquences non répétées. Il ne permet cependant pas l'assemblage *de novo* de contigs mitoyens, limitant ainsi la possibilité de reconstructions de séquences répétées ainsi que la détection de variations structurales complexes (Illumina Inc., 2011; Jain et al., 2018).

725 Le séquençage « long-reads » fait intervenir les plateformes Pacific Biosciences (PacBio) 726 ou Oxford (Nanopore) avec des séquenceurs à molécules unique. Ces technologies fournissent 727 des lectures plus longues et peuvent aider à surmonter les limitations associées aux séquences 728 répétées, aux génomes de grande taille, et améliorent le séquençage ainsi que l'assemblage de 729 novo d'un génome. Elles présente cependant un taux d'erreur élevé, 10-15% pour Pacific 730 Biosciences et 5-20% pour Oxford Nanopore, et nécessitent des données de séquençage « short-731 reads » complémentaires pour procéder aux assemblages de novo de génomes de référence (Jain 732 et al., 2018; Sedlazeck et al., 2018) (Figure 8).

733

734 Figure 8 : Complémentarité des séquençages short et long reads dans l'assemblage de novo d'un génome de 735 référence. La combinaison des deux techniques de séquençage aide à lever les ambiguïtés, notamment celles 736 liées aux séquences répétées.

737 Les données génomiques ne sont cependant pas suffisantes pour déterminer les spécificités 738 et les dynamiques d'expression au niveau cellulaire et tissulaire ainsi que pour définir 739 précisément les bornes introns/exons. Pour ceci, les approches transcriptomiques sont requises 740 en complément (Sunagar, Morgenstern, Reitzel, & Moran, 2016).

- 741

742 2.4. Traitement intégré des données issues des différentes approches « omiques » pour 743 *l'étude de la composition des venins*

744 Chacune des différentes approches présentées permet d'apporter des informations qui 745 restent fragmentaires si elles sont appréhendées de manières isolées. La combinaison des 746 données issues des différentes approches « omiques » permet alors de préciser ces données et 747 d'obtenir une vision exhaustive de la composition des venins, du gène au peptide mature.

748 Les outils de bioinformatique appliqués à la vénomique permettent de croiser l'ensemble 749 des données obtenues en génomique, transcriptomique et protéomique afin de fournir 750 rapidement une image complète du venin étudié en termes de composition, de dynamique 751 d'expression ainsi que d'évolution des gènes codant pour les toxines (Figure 9).

752 Dans le cas d'un « workflow » classique d'étude de la composition d'un venin à large 753 échelle, l'analyse en LC-MS/MS d'un venin brut, ou avant subi un traitement tel qu'une digestion enzymatique ou encore une réduction/alkylation, donne une liste de masses présentes
dans l'échantillon, leurs abondances ainsi que des séquences prédictives des toxines matures.

756 Une fois les données de RNAseq assemblées, les contigs sont traduits in silico en séquences 757 d'acides aminé au moyen d'outils bioinformatiques. La recherche d'ORFs peut ensuite 758 s'effectuer au moyen d'alignements (Camacho et al., 2009), soit avec des séquences de 759 précurseurs déjà connus, soit directement avec les séquences prédictives obtenues des données 760 de LC-MS/MS, manuellement ou de manière automatique à partir des données de RNA-Seq 761 traduites. A noter qu'il existe également des bases de données de référence pour les espèces 762 venimeuses modèles, par exemple ConoServer pour les cônes marins ou Arachnoserver pour 763 les araignées (Kaas, Yu, Jin, Dutertre, & Craik, 2012; Pineda et al., 2018).

Une fois les séquences prédictives des précurseurs de toxines obtenues, la prédiction de séquence signal aide à définir le site de coupure pour la libération de la toxine mature. Cette prédiction peut être effectuée grâce à différents serveurs tels que Phobius (<u>http://phobius.sbc.su.se</u>) ou Signal IP (Almagro Armenteros et al., 2019). Il est ensuite nécessaire de relier ces séquences prédictives de toxines matures aux masses et aux séquences prédictives acquises en LC-MS/MS pour les confirmer (Figure 9).

770 Le croisement des données protéomiques et transcriptomiques est efficace dans la mesure 771 où les informations de chaque jeu de données sont utilisées pour corriger, confirmer et améliorer 772 les autres. A titre d'exemple, les données de RNA-Seq reflètent tous les transcrits présents dans 773 les glandes à venin au moment de l'extraction de départ et permettent donc (i) d'identifier des 774 toxines présentes en moindre quantité dans le venin et qui ont pu passer inaperçues dans les 775 premières analyses protéomiques, et (ii) d'estimer l'expression des gènes les codant. A 776 contrario, la majorité des transcrits dans ces données codent des protéines de la machinerie 777 cellulaire et ne portent pas d'ORF correspondant aux toxines sécrétées dans le venin. Ce sont 778 donc les données protéomiques qui permettent de confirmer la présence et les séquences des 779 toxines matures. Les PTMs, dont les clivages protéolytiques, ne sont également détectables 780 qu'à partir des données protéomiques, notamment via la comparaison de la masse observée en 781 MS et de la masse moléculaire calculée à partir de l'ORF d'un peptide présumé.

782 Une approche dite « protéotranscriptomique » accélère donc le décryptage d'un peptidome 783 de venin de manière complète et précise. Elle ne permet cependant pas l'étude de la régulation 784 des gènes codant pour les toxines, ni la confirmation des mécanismes évolutifs menant à leur 785 diversification. Pour ceci, les données génomiques sont nécessaires.

787

788 Figure 9: Méthodologie intégrative « vénomique » et implication des différentes méthodes « -omiques » 789 dans l'étude des toxines rentrant dans la composition des venins. PTMs : modifications post-traductionnelles.

- 790

791 2.5. L'approche intégrative « vénomique » : une révolution pour la caractérisation 792 exhaustive des venins d'espèces négligées

793 La recherche en vénomique a été révolutionnée par l'utilisation des techniques 794 transcriptomiques et protéomiques à haut-débit, ainsi que par la disponibilité croissante de 795 données génomiques (Sunagar et al., 2016; Bjoern Marcus von Reumont, Campbell, & Jenner, 796 2014; Wilson & Daly, 2018). La combinaison des méthodes décrites précédemment permet 797 d'avoir rapidement une vision complète des venins, en termes de composition, de production 798 et d'évolution. De plus, grâce à une sensibilité de plus en plus élevée des appareils, les grandes 799 avancées technologiques dans la spectrométrie de masse et le séquencage NGS ont permis (i) 800 d'identifier les séquences des toxines présentes en moindre quantité dans les venins, et passées 801 inaperçues dans les précédentes analyses, (ii) l'émergence de nouvelles questions plus 802 fondamentales quant à la diversification des venins au fil de l'évolution, et (iii) d'étudier les 803 venins d'organismes jusque-là négligés de par leur taille et la faible quantité de venins 804 récoltable, tels que les rémipèdes, les polychètes ou encore certains insectes (Rádis-Baptista & 805 Konno, 2020; Björn M. von Reumont et al., 2014; Björn M. von Reumont, Undheim, Jauss, & 806 Jenner, 2017; Björn Marcus Von Reumont, 2018; Walker, Dobson, et al., 2018; Walker, 807 Hernández-vargas, et al., 2018). Drukewitz et ses collaborateurs (2018) ont par exemple 808 appliqué une approche protéotranscriptomique pour étudier la composition des venins de deux 809 espèces européennes d'asilidés, Eutolmus rufibarbis et Machimus arthriticus, des diptères 810 prédateurs d'autres insectes. Leur étude a révélé que ces venins étaient majoritairement 811 composés de peptides et de protéines non enzymatiques (Drukewitz et al., 2018). Ces auteurs 812 ont ensuite appliqué la même approche protéotranscriptomique pour l'étude du venin d'une 813 autre Asilidae, Dasypogon diadema, avant de procéder à une approche génomique comparative 814 avec d'autres groupes d'insectes (Drukewitz, Bokelmann, Undheim, & von Reumont, 2019). 815 Leurs résultats ont ainsi montré que le venin de D. diadema avait probablement évolué de 816 manière multimodale incluant (i) une néofonctionalisation après une duplication de gènes, (ii) 817 une cooptation expression-dépendante de gènes, et (iii) des gènes spécifiques de la famille des 818 Asilidae avec des origines non déterminées actuellement (Drukewitz et al., 2019).

819 Les insectes constituent un taxon hyperdiversifié regroupant actuellement plus de 5 820 millions d'espèces. Depuis leur apparition, ils ont présenté un rayonnement adaptatif 821 spectaculaire et occupent aujourd'hui des niches écologiques variées. Étant donné leur diversité 822 écologique et spécifique, il n'est pas étonnant que les venins aient évolué de manière 823 indépendante à multiples reprises dans ce taxon (Walker, Robinson, et al., 2018). Peu d'insectes 824 venimeux ont néanmoins été étudiés en détails, excepté celui des hyménoptères aculéates 825 (abeilles, guêpes, fourmis) (Baumann, Dashevsky, Sunagar, & Fry, 2018; dos Santos-Pinto, 826 Perez-Riverol, Musacchio-Lasa, et al., 2018; Senji Laxme et al., 2019; Walker, Robinson, et 827 al., 2018). La majorité de ces études se sont cependant focalisées sur les composés qualifiés 828 d'allergènes telles que les phospholipases, les phosphatases acides, les serine protéases et les 829 antigènes 5 (Baumann et al., 2018), ou sur des peptides isolés (dos Santos-Pinto, Perez-Riverol, 830 Lasa, & Palma, 2018). Peu d'études complètes des peptidomes de venins d'hyménoptères 831 aculéates ont donc été réalisées via des approches protéotranscriptomiques.

832 Ce n'est que récemment que la caractérisation du peptidome complet du venin d'une fourmi 833 myrmicine a été effectuée (Touchard et al., 2018). Grâce à la méthode vénomique, trente-sept 834 précurseurs de toxines peptidiques ont en effet été identifiés dans le venin de la fourmi 835 Tetramorium bicarinatum, la plupart montrant une organisation classique de protéine sécrétée 836 avec une région signal suivie d'une région propeptide, puis d'une région dite mature, 837 constituant la toxine bioactive. La combinaison des données protéomiques et transcriptomiques 838 a également permis de mettre en évidence deux types de PTMs sur les parties matures des 839 toxines : des O-glycosylations par des N-acétyle-hexosamine sur des résidus thréonine N-840 terminaux, et des amidations C-terminales induites par les motifs « GKK » ou « G ». Les 841 caractéristiques biochimiques et les effets biologiques des myrmicitoxines de la fourmi T. 842 bicarinatum sont détaillées dans la partie 3.6 de ce chapitre. L'analyse des régions signal et

843 propeptide a permis de répartir les myrmicitoxines en trois superfamilles de précurseurs (i.e. A, 844 B et C), et ce malgré la diversité des séquences présentées par les toxines matures des 845 superfamilles A et B (Touchard et al., 2018) (Figure 10). Parmi les superfamilles A et B, 846 quelques précurseurs ont présenté des identités de séquence moins élevées avec les séquences 847 consensus définies. Ces deux superfamilles ont donc été subdivisées (i.e. A₁, A₂, A₃, B₁ et B₂). 848 Les précurseurs regroupés dans la superfamille A possèdent des régions prépro de séquences et 849 structures similaires à celles présentées par d'autres peptides de venin de fourmis (i.e. 850 myrmeciitoxines (Cf. partie 3.2)) (Figure 10). Les superfamilles B et C constituent en revanche 851 de nouvelles familles de précurseurs dans la mesure où les régions prépro n'ont présenté aucune 852 similarité de séquence avec d'autres précurseurs de peptides de venin de fourmis déjà décrits. 853 Curieusement, les parties matures des précurseurs de la superfamille C ont montré des 854 similarités de séquence avec les sécapines, des peptides multifonctionnels trouvés dans les 855 venins d'hyménoptères aculéates (Cf. partie 3.6). Il a également été montré par une analyse 856 selon la méthode « Minimum Evolution », que les précurseurs de peptides issus d'organismes 857 non venimeux, tels que des « Host-Defense Peptides » impliqués dans l'immunité innée de 858 Drosophila melanogaster, se placaient à proximité de certains précurseurs de toxines du venin 859 de la fourmi T. bicarinatum (Figure 11).

860 Ces résultats soutiennent d'une part l'hypothèse qu'une grande diversité de toxines de venin
861 d'Hyménoptères dériveraient d'un nombre réduit de précurseurs, et d'autre part que certaines
862 toxines de venin seraient en lien avec le système immunitaire inné.

Figure 10 : Alignements des précurseurs de myrmicitoxines du venin de *Tetramorium bicarinatum* et séparation en superfamilles de précurseurs (A, B et C) sur la base des région prépro. Les résidus identiques sont surlignés en magenta. Les résidus similaires sont surlignés en bleu tandis que les résidus conservés sont surlignés en cyan. Les triangles noirs indiquent les sites de clivages libérant les toxines matures. * Pour le précurseur U₁₃-MYRTX-Tb1a, le site de clivage libérant la toxine mature est situé après le motif « GEAEAEG ». Les séquences signal prédictives sont surlignées. Modifié d'après (Touchard et al., 2018).

Figure 11 : Cladogrammes des précurseurs de toxines peptidiques du venin de *Tetramorium bicarinatum*.
Les précurseurs de toxines peptidiques du venin de *T. bicarinatum* sont dans les cases colorées. A :
superfamille A, pilosulines et autres précurseurs de peptides de venins et de « Host-Defense Peptides »
(HDPs). B : Superfamille B et précurseurs de HDPs. C : superfamille C et précurseurs de sécapines. Tiré de
(Touchard et al., 2018).

876 **3.** Les peptides de venins de fourmis

877 Il existe aujourd'hui plus de 16 000 espèces et sous-espèces de fourmis décrites (AntWeb, 878 le 08/03/20). Ces espèces se sont diversifiées et adaptées à de nombreuses niches écologiques 879 (Aili et al., 2014). Cette diversité spécifique et écologique s'illustre également par un vaste 880 champ d'utilisation des venins dans différents contextes de prédation, de défense (i.e. 881 prédateurs et pathogènes), de communication ou encore pour le développement d'une plantehôte (Frederickson et al., 2005; Orivel et al., 2001; J. O. Schmidt, 1987). En conséquence, la 882 883 composition de ces venins et la nature chimique des toxines présentent une grande variabilité. 884 La majorité des fourmis (i.e. 70% des espèce) injecte leur venin au moyen d'un aiguillon 885 (Figure 12), venin dont les toxines, à l'exception de rares taxons (i.e. tribu des Solenopsidini) 886 sont majoritairement de nature protéique (Touchard, Aili, et al., 2016). Leur appareil vulnérant 887 est, comme pour la plupart des autres hyménoptères, dérivé d'un système reproducteur ancestral 888 (Robertson, 1968). Il se compose de deux glandes à venin, connectées à un réservoir au niveau 889 d'une partie convolutée, et d'un canal déférent qui relie ce réservoir à l'aiguillon. Ce dernier

est également associé à la glande de Dufour (Mitra, 2013), qui peut être atrophiée chez certaines

891 892 espèces (Figure 13).

890

- 895 de fourmis injectant leur venin au moyen d'un aiguillon sont indiquées dans les parts colorées. Les sous-
- 896 familles matérialisées en gris regroupent des espèces n'injectant pas leurs venins.

898 Figure 13 : Appareil vulnérant de la fourmi myrmicine *Tetramorium bicarinatum*.

899 Aujourd'hui, la diversité moléculaire des toxines peptidiques des venins de fourmis se 900 révèle grâce aux approches protéotranscriptomiques. La publication de nouvelles séquences de 901 peptides croit de manière exponentielle, d'où la nécessité d'adopter une nomenclature 902 rationnelle et stable. Les toxines peptidiques publiées ont donc été nommées selon la 903 nomenclature standard définie par King et ses collaborateurs (G. F. King, Gentz, Escoubas, & Nicholson, 2008). Les fourmis constituent un groupe très diversifié dont les espèces sont 904 905 classées en 17 sous-familles (Figure 12), une modification a ainsi été apportée à cette 906 nomenclature afin d'adapter les noms génériques des toxines de venins de fourmis en fonction 907 des noms de sous-familles (Touchard, Aili, et al., 2016).

- 908
- 909

3.1. Les paraponeratoxines (Paraponerinae)

910La sous-famille Paraponerinae ne regroupe qu'une seule espèce, Paraponera clavata dite911la fourmi « balle de fusil ». Cette fourmi mesure plus de 2 cm de longueur et est connue en912raison de la douleur infligée par sa piqûre. La première étude portant sur ce venin a isolé, par913des méthodes biochimiques, le composant le plus abondant, une neurotoxine peptidique linéaire914(i.e. sans pont disulfure) longue de 25 acides aminés et initialement nommée poneratoxine915(actuellement, δ-PPONTX-Pc1a) (Piek, Hue, Mantel, Terumi, & Schmidt, 1991) (Figure 14 –916A). Une analyse RMN dans un environnement imitant une bicouche lipidique a démontré que

917 cette toxine était composée de deux hélices α connectées par une boucle au niveau d'un doublet 918 de prolines (Figure 14 - B) (Szolajska et al., 2004). Elle est capable de moduler les influx 919 nerveux des vertébrés et des invertébrés, notamment en prolongeant les potentiels d'actions via 920 l'inhibition de l'inactivation des canaux sodiques voltage-dépendant (i.e. Na_v 1.7) (Piek, Duval, 921 et al., 1991; Piek, Hue, et al., 1991).

С

Région propeptide

δ-PPONTX-Pc1e MRIGKLILISVAIIAIMISDPVKSEAVAKPSAEAVSEA

922

923 Figure 14 : Paraponeratoxines contenues dans les venins de différents spécimens de *Paraponera clavata*.
924 (A) Détail des séquences matures des cinq paraponeratoxines. (B) Structure 3D de δ-PPONTX-Pc1a. Les
925 acides aminés neutres apolaires sont colorés en jaune. Les résidus chargés positivement sont colorés en bleu
926 tandis que ceux chargés négativement sont colorés en rouge. Les acides aminés neutres polaires sont colorés
927 en vert. (C) Séquence de la région prépro de la toxine δ-PPONTX-Pc1e.

928 Quatre peptides analogues ont été découverts chez des spécimens appartenant à différentes 929 populations de P. clavata d'Amérique du Sud (Costa Rica, Panama, Pérou et Guyane 930 Française). Ces analogues, δ -PPONTX-Pc1b, -Pc1c, -Pc1d et -Pc1e, diffèrent d'un acide aminé 931 dans leur région mature C-terminale. Toutes les paraponeratoxines possèdent une région N-932 terminale constituée majoritairement d'acides aminés hydrophobes (notamment en leucines) 933 ainsi qu'une partie C-terminale chargée (Figure 14 – A). D'un point de vue pharmacologique, 934 les peptides analogues sont tous capables de moduler les Nav 1.7 avec des efficacités différentes 935 (Aili et al., 2020; Johnson, Rikli, Schmidt, & Evans, 2017). Seul le précurseur complet de δ -936 PPONTX-Pc1e a été identifié. La séquence signal n'a été déterminée que récemment et contient 937 24 acides aminés (i.e. MRIGKLILISVAIIAIMISDPVKS). Elle ne présente pas de similarité 938 comparativement aux autres séquences signal décrites dans les venins de fourmis, et est suivie
939 d'un segment de 14 acides aminés constituant la région propeptide (EAVAKPSAEAVSEA)
940 (Figure 14 – C) (Aili et al., 2020).

- 941
- 942 *3.2. Les myrmeciitoxines (Myrmeciinae)*

943 Les Myrmeciinae regroupent aujourd'hui 94 espèces endémiques d'Australie. Un certain 944 nombre d'espèces du genre Myrmecia cause fréquemment de réactions allergiques chez 945 l'Homme. Ces fourmis utilisent leur venin à la fois dans des contextes de prédation, notamment 946 afin de nourrir les larves carnivores, et de défense. Leurs piqûres sont d'ailleurs connues pour 947 être particulièrement douloureuses. Parmi les Myrmeciinae, les compositions en toxines 948 peptidiques des venins de deux espèces du groupe taxonomique Myrmecia pilosula (M. pilosula 949 et M. banksi), et celle du venin de M. gulosa ont été étudiées en détails (Wanandy, Gueven, 950 Davies, Brown, & Wiese, 2015).

951 Les compositions des venins de M. pilosula et M. banksi ont montré une majorité de toxines 952 dimériques initialement appelées pilosulines. La présence de peptides dimériques a également 953 été montré chez *M. gulosa*, bien que ce peptidome soit majoritairement composé de peptides 954 linéaires, dont certains possèdent des groupements N-acétylhexosamines (MIITX₁-Mg7a et 955 MIITX₁-Mg7b) (Tableau II) (Robinson et al., 2018). La majorité des myrmeciitoxines décrites 956 jusqu'à maintenant présentent des caractéristiques biochimiques communes dans les séquences 957 en acides aminés de leur partie mature, indépendamment de la présence ou non de cystéines. 958 Elles sont en effet toutes riches en lysine, et la plupart possèdent donc une charge positive nette 959 (Tableau II). De plus, les structures 3D étudiées ont révélé une prédominance d'hélices α 960 amphiphiles (Figures 15).

961 A titre d'exemple, le composant le plus abondant du venin de M. pilosula est un 962 hétérodimère composé de deux chaînes cationiques (i.e. M-MIITX-Mp2a et M-MIITX-Mp2b) 963 formant des hélices α reliées de manière antiparallèle par deux ponts-disulfures (Figure 15, A 964 et B). Cet hétérodimère agit par perturbation membranaire. Il exerce une activité 965 bactériostatique contre une large gamme de bactéries, une activité nociceptive sur cellules de 966 mammifères ainsi qu'une activité insecticide. Cette toxine induit en effet une douleur spontanée 967 in vivo chez les souris (e.g. comportements caractéristiques de léchage et de tressaillement de la patte), et provoque in vitro une augmentation rapide de la concentration en Ca²⁺ 968 969 intracellulaire suivie d'une lyse, indépendamment du type de cellule testé (i.e. cellules 970 neuronales et non-neuronales) (Nixon et al., 2020; Zelezetsky, Pag, Antcheva, Sahl, & Tossi, 971 2005). Les tests d'activité insecticide ont montré qu'elle induisait une paralysie irréversible 972 chez *Drosophila melanogaster* avec une dose létale de l'ordre du picomole/g (Nixon et al.,
973 2020). Il est également apparu que la dimérisation, couplée à une connectivité antiparallèle des
974 ponts disulfures, est essentielle à l'activité de cette toxine. Les analogues synthétisés,
975 l'hétérodimère parallèle, les homodimères potentiels (parallèle et antiparallèle) ou les
976 monomères, étaient en effet tous moins efficaces que l'hétérodimère antiparallèle natif, voire
977 n'avaient aucun effet (Nixon et al., 2020).

978 Des activités nociceptive et insecticide ont également été démontrées pour une toxine 979 peptidique linéaire du venin de *M. gulosa* (i.e. MIITX₁-Mg1a). Contrairement à l'hétérodimère 980 antiparallèle de *M. pilosula*, l'augmentation en Ca²⁺ intracellulaire provoquée par ce peptide 981 n'est pas corrélée à une lyse cellulaire sur des ganglions spinaux de souris. Cette toxine induit 982 également une paralysie dose-dépendante (de l'ordre du μ g/g) et réversible chez des criquets 983 (Robinson et al., 2018).

984

Figure 15 : Myrmeciitoxines contenues dans le venin de *Myrmecia pilosula*. (A) Séquences des chaînes M-MIITX-Mp2a et M-MIITX-Mp2b, et connectivité des ponts disulfures de l'hétérodimère antiparallèle. (B) Représentation 3D de l'hétérodimère antiparallèle, tiré de (Dekan et al., 2017). La chaîne A est colorée en rose et la chaîne B est colorée en vert. (C) Séquence de M-MIITX-Mp1. (D) Structure 3D de M-MIITX-Mp1. Les acides aminés neutres apolaires sont colorés en jaune. Les résidus chargés positivement sont colorés en bleu tandis que ceux chargés négativement sont colorés en rouge. Les acides aminés neutres polaires sont colorés en vert.

992 Si les myrmeciitoxines décrites montrent une diversité dans les séquences de leurs parties 993 matures (Tableau II), elles possèdent des régions signal et propeptide très similaires. Les

994 régions signal correspondent aux 25 aminés N-terminaux et suivent la séquence consensus 995 suivante : MKLSCLLLTLAIIFVLTIVHAPNVEA. Ces régions signal sont suivies de régions 996 propeptides d'une trentaine d'acides aminés (consensus : 997 KALADPESDAVGFAXAFGEADAVGEADPNA) (Figure 16). Ces similarités de séquences 998 prépro sont également observées chez d'autres précurseurs décrits dans les venins de fourmis 999 ponerines et myrmecines (i.e. Dinoponera quadriceps, Odontomachus monticola, Tetramorium 1000 bicarinatum) (Kazuma, Masuko, Konno, & Inagaki, 2017; Mariano et al., 2019; Torres et al., 1001 2014; Touchard et al., 2018), ainsi que chez d'autres hyménoptères aculéates (Figure 16). Les 1002 séquences des toxines matures présentent en revanche une grande diversité. Ces observations 1003 suggèrent que ces toxines peptidiques de venin, nommées « Aculéatoxines », appartiennent à 1004 la même famille de gènes et auraient donc dérivés d'un nombre réduit de précurseurs (Robinson 1005 et al., 2018).

1007 Tableau II : Toxines peptidiques contenues dans les venins des fourmis du genre *Myrmecia*. PTMs, post-translational modifications ; * Amidation C-terminale. Les cystéines
 1008 sont surlignées en jaune. Les acides aminés chargés positivement sont surlignés en bleu tandis que les résidus chargés négativement sont surlignés en rouge.

Espèces	Nom des toxines	Séquences	PTMs
Myrmecia gulosa	MIITX ₁ -Mg1a	GLG <mark>R</mark> LIG <mark>K</mark> IA <mark>KK</mark> GA <mark>K</mark> IAA <mark>B</mark> AAANAAA <mark>BK</mark> AA <mark>B</mark> AL*	
Myrmecia gulosa	MIITX ₁ -Mg2a	LLS <mark>KD</mark> QAL <mark>KH</mark> VWGVL <mark>KK</mark> LG <mark>K</mark> AAM <mark>E</mark> YVIQQI <mark>C</mark> A <mark>K</mark> YN <mark>KK</mark>	Homodimère
Myrmecia gulosa	MIITX ₁ -Mg3a	K <mark>NEE</mark> TM <mark>EE</mark> AL <mark>K</mark> GLN <mark>E</mark> LK <mark>ER</mark> LKKQGI <mark>D</mark> TAALNLD <mark>EK</mark> LLT	
Myrmecia gulosa	MIITX ₁ -Mg4a	SLVG <mark>C</mark> P <mark>R</mark> P <mark>D</mark> FLPSWN <mark>RCK</mark> SCV <mark>CK</mark> NN <mark>KLKC</mark> P <mark>K</mark> IL <mark>K</mark> GSLL <mark>K</mark> TAA	Homodimère
Myrmecia gulosa	MIITX ₁ -Mg4b	SLVG <mark>C</mark> P <mark>R</mark> PNFLPSWN <mark>RCKCICK</mark> NN <mark>K</mark> PM <mark>CRK</mark> LPNLL <mark>K</mark> TTA	Homodimère ?
Myrmecia gulosa	MIITX ₁ -Mg5a	SINV <mark>K</mark> NLM <mark>D</mark> MI <mark>RE</mark> QITS <mark>RLKK</mark>	
Myrmecia gulosa	MIITX ₁ -Mg5b	SINV <mark>K</mark> NLMNMI <mark>RE</mark> QITS <mark>RLKK</mark>	
Myrmecia gulosa	MIITX1-Mg6a	F <mark>R</mark> GP <mark>C</mark> LKIKGYK <mark>C</mark>	
Myrmecia gulosa	MIITX ₁ -Mg7a	<mark>KR</mark> SK <mark>SSSKTK</mark> P <mark>KK</mark> P <mark>KKK</mark> PKKKIKIPDWVKSGGKMVG <mark>E</mark> AVAGAVADAAVSAVMDAAVGTTAEPEQ	3 HexNAc
Myrmecia gulosa	MIITX ₁ -Mg7b	<mark>KRRR</mark> GL <mark>KK</mark> IIG <mark>K</mark> VI <mark>K</mark> GTG <mark>K</mark> VAG <mark>H</mark> AAASAVA <mark>D</mark> AAVSAAIDAVVGTT <mark>EE</mark> PHQ	3 HexNAc
Myrmecia gulosa	MIITX ₁ -Mg7c	KRRRRLRKIIRKVIKGTGKVAGEAAASAVAGAAVSAAIDAAVGTTEEPEQ	3 HexNAc ?
Myrmecia gulosa	MIITX1-Mg9a	NI <mark>K</mark> WS <mark>K</mark> YA <mark>KK</mark> VG <mark>K</mark> VIV <mark>KH</mark> GIPLAASIALSQ*	
Myrmecia gulosa	MIITX ₂ -Mg1a	DISDYGDPCSDDLKDYCIHGDCFFLKELNQPAC <mark>RC</mark> YTGYYGS <mark>RCEH</mark> IDHN	
Myrmecia pilosula	M-MIITX-Mp1	GLGSVFG <mark>R</mark> LA <mark>R</mark> ILG <mark>R</mark> VIP <mark>K</mark> VA <mark>KK</mark> LGPKVAKVLPKVM <mark>KE</mark> AIPMAV <mark>E</mark> MA <mark>K</mark> SQ <mark>EE</mark> QQPQ	
Myrmecia pilosula	M-MIITX-Mp2a	I <mark>D</mark> W <mark>KK</mark> VDW <mark>KK</mark> VS <mark>KK</mark> T <mark>C</mark> KVML <mark>K</mark> A <mark>CK</mark> FL*	Hatana dimàna
Myrmecia pilosula	M-MIITX-Mp2b	LIGLVS <mark>K</mark> GT <mark>C</mark> VLV <mark>K</mark> TV <mark>CKK</mark> VL <mark>K</mark> Q	neterodimere
Myrmecia banksi	M-MIITX-Mb1a	IIGLVS <mark>K</mark> GT <mark>C</mark> VLV <mark>K</mark> TV <mark>CKK</mark> VL <mark>K</mark> Q*	1 S-S
Myrmecia banksi	M-MIITX-Mb2a	F <mark>D</mark> IT <mark>K</mark> LNI <mark>KK</mark> LT <mark>K</mark> AT <mark>CK</mark> VIS <mark>K</mark> GASM <mark>CK</mark> VLF <mark>DKKK</mark> Q <mark>E</mark>	Homodimère
Myrmecia banksi	M-MIITX-Mb3a	DV <mark>K</mark> GM <mark>KK</mark> AI <mark>KE</mark> ILD <mark>C</mark> VI <mark>EK</mark> GY <mark>DK</mark> LAA <mark>KLKK</mark> VIQQLW <mark>E</mark>	Homodimère

1011 Figure 16 : Alignements de précurseurs de toxines peptidiques de venin d'Hyménoptères sur la base des régions signal et propeptide. Les régions matures présentent

1012 une grande diversité de séquences et n'ont pas été alignées. Les méthionines, lysines, arginines, aspartate/glutamate et cystéines sont respectivement surlignés en violet,

1013 bleu, rouge et jaune. Les modifications post-traductionnelles n'ont pas été matérialisées. ^a (Torres et al., 2014), ^b (Kazuma et al., 2017) et ^c (Bouzid et al., 2014). Tiré

1014 de (Robinson et al., 2018)

1015 *3.3. Les poneritoxines (Ponerinae)*

1016 Les Ponerinae constituent la troisième sous-famille phylogénétique en termes de nombre 1017 d'espèces, et sont principalement rencontrées dans les régions tropicales. Les ponerines sont 1018 généralement de grande taille et utilisent leur venin à la fois pour la prédation et la défense. 1019 Certaines espèces présentent également de puissantes mandibules, pouvant s'ouvrir jusqu'à 1020 180°, qu'elles utilisent dans la capture de proies. (Borowiec, Moreau, & Rabeling, 2020). Parmi 1021 cette sous-famille, les études des venins de 7 espèces de fourmis appartenant aux genres 1022 Neoponera (anciennement Pachycondyla), Dinoponera, Odontomachus et Anochetus ont mené 1023 à la caractérisation des séquences de 62 toxines peptidiques.

La plupart des ponerixotines décrites sont des peptides linéaires, polycationiques et forment des hélices amphiphiles (Cologna et al., 2013; Johnson, Copello, Evans, & Suarez, 2010; Kazuma et al., 2017; Mariano et al., 2019; Orivel, 2000; Orivel et al., 2001; Torres et al., 2014). D'un point de vue pharmacologique, les poneritoxines linéaires testées montrent des propriétés multifonctionnelles (i.e. hémolytiques, cytostatiques contre une large gamme de microorganismes et insecticides) (Dodou Lima, de Paula Calvacante, & Radis-Baptista, 2020; Orivel et al., 2001; Radis-Baptista et al., 2020).

1031 Certaines poneritoxines présentent néanmoins des séquences et des structures originales. 1032 L'étude du venin d'Anochetus emarginatus a par exemple mené à l'identification des séquences de sept peptides possédant des séquences similaires et structurées par deux ponts disulfures 1033 1034 (Touchard, Brust, et al., 2016) (Figure 17 - A). L'analyse RMN de la toxine U₁-PONTX-Ae1a 1035 a de plus révélé une structure tridimensionnelle n'ayant jamais été observée dans un venin 1036 animal : une β -hairpin antiparallèle C-terminale connectée à la région N-terminale par deux 1037 ponts-disulfures (Figure 17 - B et C). Cette toxine induit une paralysie réversible sur des 1038 mouches (PD₅₀ = 8.9 ± 3.1 nmol/g) et inhibe sélectivement les canaux calciques voltagedépendant humains de type L ($IC_{50} = 4,6 \mu M$) (Touchard, Brust, et al., 2016). 1039

1041 **Figure 17 :** Poneritoxines isolées du venin d'*Anochetus emarginatus*. (A) Les résidus identiques sont 1042 surlignés en magenta. Les résidus similaires sont surlignés en bleu tandis que les résidus conservés sont 1043 surlignés en cyan. (B) Structure de U₁-PONTX-Ae1a déterminée à partir d'une analyse RMN, et (C) 1044 Représentation 3D. Les brins β sont colorés en cyan et les ponts disulfures sont matérialisés en rouge. Tirés 1045 de (Touchard, Brust, et al., 2016).

1046 Des toxines présentant des structures de types Kunitz et ICK (Inhibitor Cystin Knot) ont 1047 également été identifiées pour la premières fois chez les fourmis dans le venin de Dinoponera quadriceps (Figure 18) (Mariano et al., 2019). Ces structures, conférant stabilité et résistance 1048 1049 aux protéases grâce à l'agencement de trois ponts disulfures, ont déjà été observées dans de 1050 nombreux venins (e.g. serpents, araignées). Le motif Kunitz consiste en deux hélices α et deux 1051 feuillets β interconnectés par trois ponts disulfures (Figure 18 - A). Le motif ICK contient 1052 quatre feuillets β antiparallèles formant un « pseudo-nœud » : un anneau est formé par deux 1053 ponts disulfures (C_I-C_{IV} et C_{II}-v) dans lequel passe un troisième pont disulfure (C_{III}-C_{VI}) (Figure 1054 18 - B).

1055 Seuls les précurseurs des peptides de venins de *D. quadriceps* et *Odontomachus monticola* 1056 ont été caractérisés (Kazuma et al., 2017; Mariano et al., 2019). Les séquences signal sont 1057 similaires à celles décrites pour les myrmeciitoxines (Cf. partie *3.2*) et suivent la séquence 1058 consensus MKXSXLXLAFXXVXMMAIMYNXVQATA. Elles sont suivies d'une région 1059 propeptide longue de 14 à 22 acides aminés, suivant la séquence consensus : 1060 AAAAXADADAXAEAXAXAEA.

Figure 18 : Poneritoxines de type Kunitz (A) et ICK (B) issus du venin de *Dinoponera quadriceps*. La
structure 3D de la toxine de type Kunitz est tirée de (Mariano et al., 2019) tandis que la représentation
schématique de la structure ICK est tirée de (Aili et al., 2014).

1066 *3.4. Les ectatotoxines*

1067 Quatre ectatotoxines ont été identifiées dans les venins d'Ectatomma tuberculatum et E. 1068 brunneum (anciennement E. quadricens). La première ectatotoxine, caractérisée dans les 1069 années 1990 chez E. tuberculatum, est un peptide dimérique constitué de deux chaînes 1070 cationiques, ω /M-ectatotoxin-Et1a (sous-unité A – code Uniprot : P49343) et ω /M-ectatotoxin-1071 Etla (sous unité B - code Uniprot : P49344) (K. A. Pluzhnikov et al., 1994). Les analyses en 1072 RMN ont démontré que chaque chaîne d'acides aminés se compose de deux hélices α reliées 1073 par une boucle de quatre résidus, formant une structure en épingle à cheveux stabilisée par un 1074 pont disulfure intracaténaire. Les deux chaînes sont reliées entre elles par un troisième pont 1075 disulfure. Ce peptide forme donc un ensemble de quatre domaines α (Nolde, Sobol, Pluzhnikov, 1076 Grishin, & Arseniev, 1995; K. A. Pluzhnikov et al., 1994) (Figure 19, A et B). Les tests 1077 d'activité biologiques sur des myocytes isolés de rats ont en effet permis d'identifier cette 1078 toxine comme étant un inhibiteur de canaux calciques voltage-dépendant, mais elle exerce 1079 également une action cytolytique sur des cellules de vertébrés et invertébrés (K. Pluzhnikov et 1080 al., 1999).

1081 Les trois autres ectatotoxines ont été caractérisées chez *E. brunneu*m (M-ectatotoxin-Eb2a,
1082 -Eb2b, -Eb2c), et sont toutes des peptides cationiques linéaires possédant des effets

1083 bactériolytiques contre des bactéries Gram négatif (Kirill A. Pluzhnikov et al., 2014) (Figure1084 19, C).

1085 Cependant, aucune étude transcriptomique n'a été effectuée sur les glandes à venin de ces
1086 fourmis. Les séquences entières des précurseurs des ectatotoxines n'ont donc pas été
1087 caractérisées.

1088

1089Figure 19 : Ectatotoxines retrouvées dans les venins d'*Ectatomma tuberculatum* et *E. brunneum*. (A)1090Séquences des chaînes composant l'hétérodimère ω /M-ectatotoxin-Et1a de *E. tuberculatum*, et connectivité1091des ponts disulfures. (B) Représentation 3D de l'hétérodimère ω /M-ectatotoxin-Et1a, tiré de (K. A.1092Pluzhnikov et al., 1994). La chaîne A est colorée en bleu et la chaîne B est colorée en rouge. (C) Séquences1093des ectatotoxines linéaires trouvées dans le venin de *E. brunneum*. Les résidus chargés positivement sont1094colorés en bleu tandis que les résidus chargés négativement sont colorés en rouge. Les résidus neutre polaires1095sont colorés en vert tandis que les résidus neutres apolaires sont colorés en jaune.

1096

1097 *3.5. Les pseudomyrmecitoxines*

1098 La sous-famille des *Pseudomyrmecinae* comprend des fourmis majoritairement arboricoles 1099 des genres Pseudomyrmex, Myrcidris et Tetraponera (Borowiec et al., 2020). Parmi les 1100 pseudomyrmecines, les venins de deux espèces de fourmis du genre Pseudomyrmex ont été 1101 étudiés (i.e. P. penetrator et P. triplarinus). Ces fourmis possèdent des venins qui paralysent 1102 rapidement les arthropodes, et dissuadent efficacement les herbivores vertébrés en induisant 1103 une forte douleur, ce qui suggère qu'elles contiennent à la fois des composés neurotoxiques et 1104 cytotoxiques. Bien que les venins de Pseudomyrmex possèdent des peptides aux structures 1105 variées, avec notamment des peptides monomériques linéaires et structurés par des ponts 1106disulfures, toutes les pseudomyrmecitoxines décrites à ce jour sont des toxines dimériques. Les1107premières toxines isolées du venin de *P. triplarinus* sont des hétérodimères constitués de1108chaînes cationiques amphiphiles de séquences similaires, reliées entre elles par deux ponts1109disulfures (Figure 20 – A et C). D'un point de vue fonctionnel, les six hétérodimères produisent1110une inhibition dose-dépendante significative d'œdèmes induits par la carraghénine chez des1111rats, et pourraient donc exercer une action anti-inflammatoire (Pan & Hink, 2000).

1112 Plus récemment, un hétérodimère antiparallèle a été identifié chez P. penetrator (i.e. Δ -PSDTX-Pp1a). Les deux chaînes composant cet hétérodimère sont cationiques, amphiphiles et 1113 1114 reliées entre elles de manière antiparallèle grâce à deux ponts disulfures (Figure 20 – B). Elles possèdent également des séquences similaires, avec 85% d'identité de séquence (Figure 20 -1115 1116 C). La structure antiparallèle de cette toxine lui confère une grande stabilité, avec une demi-vie de 13 heures en présence de protéinase K. Les tests in vitro et in vivo ont également montré 1117 1118 qu'elle exerce un effet cytotoxique sur les cellules d'Aedes albopictus ($IC_{50} = 1;04 \mu M$), ainsi qu'une paralysie irréversible sur des mouches menant à la mort en moins de 24h (LD₅₀ = 1119 1120 3 nmol/g) (Touchard, Mendel, Boulogne, Herzig, & Emidio, 2020).

1121Aucune étude transcriptomique des glandes à venin de ces espèces n'a été effectuée. Les1122séquences signal des pseudomyrmecitoxines restent encore non caractérisées à ce jour.

2 -			
Pseudomyrmecitoxines	Masse (Da)	Sous-unités	
		Petites	Grandes
I	7069	SS1	LS2
П	6998	SS1	LS1
Ш	7090	SS2	LS2
IV	7143	SS2	LS2
V	7017	SS3	LS1
VI	7069	SS3	LS1

В

С

		%ID	%S	Espèces
⊿ -PSDTX-Pp1a - A	IDPLTILKILKGGLKSICKHRKYLDKACASIGQ	-	-	P. penetrator
⊿-PSDTX-Pp1a - B	K <mark>I</mark> PN <mark>ILK</mark> GGLKSICKHRKYLDKACAAI	85	89	P. penetrator
J ₁ -PSDTX-Pt1-SS1	LFGG <mark>LL</mark> DKLKEK <mark>IK</mark> KY <mark>CN-KE</mark> NLDKACSKL	34	59	P. triplarinus
U ₁ -PSDTX-Pt1-LS2	<mark>I</mark> SLAQIKK <mark>LLQ<mark>II</mark>KQGLKAIC</mark> DN <mark>RD</mark> L <mark>IAKGC</mark> QA	36	58	P. triplarinus
J ₁ -PSDTX-Pt1-SS2	LFGGLLDKLREKIKKYCN-KENLDKACSKL	31	59	P. triplarinus
U ₁ -PSDTX-Pt1-LS1	LSLGTIKKLLQILAQGLKAICNHRDLIAKGCQA	36	55	P. triplarinus
J ₁ -PSDTX-Pt1-SS3	LFGN <mark>II</mark> DK <mark>LR</mark> EK <mark>IK</mark> KY <mark>CN</mark> - <mark>KE</mark> NLDKACSKL	31	59	P. triplarinus

1123

Figure 20 : Pseudomyrmecitoxines retrouvées chez *Pseudomyrmex triplarinus* et *P. penetrator.* (A) Composition des hétérodimères du venin de *P. triplarinus.* (B) Connectivité des ponts-disulfures de l'hétérodimère Δ -PSDTX-Pp1a. Les acides aminés neutres apolaires sont colorés en jaune. Les résidus chargés positivement sont colorés en bleu tandis que ceux chargés négativement sont colorés en rouge. Les acides aminés neutres polaires sont colorés en vert. (C) Alignements des séquences de pseudomyrmecitoxines décrites à ce jour. Les résidus identiques sont surlignés en magenta tandis que les résidus similaires sont surlignés en bleu.

1131 *3.6. Les myrmicitoxines*

Les *Myrmicinae* regroupent actuellement le plus grand nombre d'espèces décrites (i.e. 6678 espèces) (Borowiec et al., 2020). Seuls les venins de trois espèces de fourmis myrmicines ont cependant été étudiés. Deux myrmicitoxines linéaires ont en effet été isolées des venins de *Myrmica rubra* et *Manica rubida* (Heep, Klaus, et al., 2019; Heep, Skaljac, et al., 2019). Ces

Α

toxines, appelées respectivement U-MYRTX-MRArub1 et U-MYRTX-MANr1, sont
constituées de 10 acides aminés et montrent 80% d'identité de séquence (Figure 21). Elles
possèdent toutes deux une charge nette négative, due à la présence d'un acide aspartique et d'un
acide glutamique. U-MYRTX-MANr1 cause une paralysie réversible chez des pucerons tandis
que U-MYRTX-MRArub1 augmente leur sensibilité aux insecticides (e.g. imidaclopride,
méthomyle) (Heep, Klaus, et al., 2019; Heep, Skaljac, et al., 2019).

1142 Les régions signal et propeptides de ces deux toxines n'ont cependant pas été décrites.

U-MYRTX-MRArub1 U-MYRTX-Man1

I <mark>D</mark> P <mark>K</mark> L <mark>E</mark> SLA	

%ID	%S	Espèces
-	-	Myrmica rubra
80	90	Manica rubida

1143

Figure 21 : Myrmicitoxines isolées des venins de *Myrmica rubra* (i.e. MRArub1) et *Manica rubida* (i.e.
Man1). Les résidus chargés négativement sont surlignés en rouge tandis que les résidus chargés positivement
sont surlignés en bleu.

1147 En revanche, la caractérisation du peptidome du venin de *T. bicarinatum* (Cf. partie 2.5 de 1148 ce chapitre) a mené à l'identification de 37 précurseurs de toxines peptidiques. Ces peptides ont 1149 été classés en vingt familles selon les similarités de séquence de leur partie mature (i.e. U₁ à U₂₀), et consistent majoritairement en des toxines linéaires et cationiques. Trois familles 1150 1151 regroupent cependant des peptides possédant un pont disulfure (i.e. U₆, U₁₁ et U₁₇). Les deux toxines les plus abondantes, M-MYRTX-Tb1a (i.e. Bicarinaline) et U₁-MYRTX-Tb1a (i.e. 1152 1153 P17), sont linéaires, cationiques et amphiphiles (Figure 22). La caractérisation des séquences 1154 des précurseurs de ces deux peptides a également révélé que les gènes les codant s'expriment 1155 en dehors du système vulnérant, dans l'abdomen de la fourmi T. bicarinatum. D'un point de 1156 vue fonctionnel, la Bicarinaline exerce une activité bactériolytique contre une large gamme de 1157 bactéries Gram positives et négatives tandis que le P17 possède une activité 1158 immunomodulatrice sur des macrophages humain *via* l'activation d'un RCPG (i.e.MRGPRX2) 1159 (Benmoussa et al., 2017; Duraisamy et al., 2020; Rifflet et al., 2012; Téné et al., 2014).

Figure 22 : Séquences et représentations 3D des peptides matures Bicarinaline et P17. Les résidus chargés
positivement sont colorés en bleu. Les résidus chargés négativement sont colorés en rouge. Les résidus
neutres polaires sont colorés en vert. Les résidus neutres apolaires sont colorés en jaune.

1165 Certaines myrmicitoxines matures présentent des similarités de séquences avec des peptides 1166 caractérisés dans les venins d'autres hyménoptères aculéates. Les peptides U₁₇ possèdent par 1167 exemple 23 à 56% d'identité de séquence avec des sécapines identifiées dans des venins d'Apis 1168 mellifera et de guêpes. Bien que le peptide U₃ et la paraponeratoxine isolée du venin de P. 1169 clavata présentent seulement 36% d'identité de séquence, ces peptides montrent des 1170 caractéristiques biochimiques proches, notamment une majorité d'acides aminés hydrophobes concentrés dans la région N-terminale ainsi que des acides aminés chargés en position C-1171 1172 terminale (Figure 23) (Touchard et al., 2018).

1173

Figure 23 : Alignement des séquences des myrmicitoxines matures de *Tetramorium bicarinatum* avec d'autres peptides de venins d'hyménoptères aculéates. Les résidus identiques sont surlignés en magenta. Les résidus similaires sont surlignés en bleu tandis que les résidus conservés sont surlignés en cyan. Les pourcentages d'identité (%ID) sont relatifs au premier peptide de chaque famille. Les étoiles rouges représentent des amidations C-terminales et les résidus de thréonine encadrés en rouge sont O-glycosylés. Tiré de (Touchard et al., 2018).

En conclusion, un total de 136 toxines peptidiques de venins a été identifié dans six sous-1181 familles familles phylogénétiques des Formicidae. La majorité de ces peptides sont linéaires, 1182 1183 cationiques et amphiphiles, et induisent des effets nociceptifs, cytolytiques et/ou insecticides. 1184 Des structures plus complexes ont été également caractérisées, impliquant notamment la 1185 formation de ponts disulfures (e.g. Kunitz-like, ICK-like, dimères antiparallèles), avec des 1186 activités biologiques tout aussi remarquables. Certaines études ont révélé que les précurseurs de certaines toxines montrent des séquences signal et propeptide similaires à celles d'autres 1187 1188 peptides identifiés dans les venins d'espèces de sous-familles phylogénétiques voire de familles 1189 différentes. Ceci suggère que ces toxines, bien que présentant une grande diversité de séquences 1190 matures, seraient codées par une même famille de gènes. Néanmoins, seulement 69 séquences 1191 de précurseurs de toxines peptidiques de venins de fourmis ont été identifiées, soit un peu plus 1192 de la moitié du nombre de peptides caractérisés.

1194 4. L'immunité des insectes

1195 Récemment, il a été montré que les régions prépro de « Host Defense Peptides » (HDPs) de 1196 l'hémolymphe de la drosophile se plaçaient dans les mêmes clusters que certaines toxines du 1197 venin de *T. bicarinatum* (Touchard et al., 2018). Ces résultats, combinés aux activités 1198 bactériolytiques et immunomodulatrices de la Bicarinaline et du P17 et l'expression des gènes 1199 les codant en dehors du système vulnérant, soulèvent la question du lien pouvant exister entre 1200 le système immunitaire inné des insectes venimeux et les toxines contenues dans leur venin.

1201 L'immunité des organismes pluricellulaires implique des organes et mécanismes de défense 1202 qui les protègent contre des substances étrangères et des pathogènes via différents systèmes de 1203 reconnaissance et de réponse. Les insectes possèdent un système immunitaire complexe et 1204 efficace, et ce malgré leur courte espérance de vie (Larsen, Reynaldi, & Guzmán-Novoa, 2019). 1205 De par son cycle de vie court et la connaissance de son génome, la mouche Drosophila 1206 melanogaster est l'insecte qui a été le plus étudié dans cette thématique (Charroux & Royet, 1207 2010). Ce modèle biologique a d'ailleurs permis une meilleure compréhension de l'immunité 1208 chez d'autres organismes. Les systèmes immunitaires des moustiques et des abeilles mellifères 1209 sont par exemple très similaires à celui des drosophiles. De plus, la plupart des voies de 1210 signalisation cellulaire découvertes chez les insectes sont conservées chez les mammifères 1211 (Bang, 2019; Lemaitre & Hoffmann, 2007; Tafesh-Edwards & Eleftherianos, 2020).

1212 *4.1. Immunité acquise vs. Immunité innée : définitions et application aux insectes*

1213 Deux types d'immunité sont classiquement distingués : l'immunité innée et l'immunité 1214 acquise. L'immunité acquise, appelée également « spécifique » ou « adaptative », décrit une 1215 protection améliorée contre des réinfections avec un type de pathogène (Larsen et al., 2019). 1216 Cette protection implique donc une mémoire à long terme et des molécules agissant dans la 1217 reconnaissance du soi et du non-soi, telles que les molécules du complexe majeur 1218 d'histocompatibilité, les récepteurs T et les anticorps. Elles agissent de manière spécifique 1219 contre un pathogène donné quand l'organisme y est exposé plus d'une fois (Larsen et al., 2019; 1220 Helge Schlüns & Crozier, 2009). Cette immunité médiée par les anticorps est retrouvée 1221 exclusivement chez les vertébrés (Kimbrell & Beutler, 2001).

1222 L'immunité innée comprend une protection avec une faible capacité de mémoire 1223 immunologique. Cette protection intervient rapidement suite à l'exposition aux pathogènes ou

1224 aux substances toxiques et est considérée comme la première ligne de défense des organismes 1225 pluricellulaires. Elle est en conséquence très conservée d'un point de vue phylogénétique. (Gao, 1226 Tian, & Zhu, 2007; Imler & Hoffmann, 2001). De manière générale, les invertébrés, et plus 1227 particulièrement les insectes, sont dits dépourvus de système immunitaire adaptatif car ils ne 1228 possèdent pas de lymphocyte (Zaidman-Rémy et al., 2006; Zasloff, 2002). La défense de 1229 l'organisme repose ainsi essentiellement sur les réactions du système immunitaire inné 1230 (Satyavathi et al. 2014). Cette protection comprend des barrières physiques (exosquelette, épithéliums), des molécules de reconnaissance (les PRRs pour Pattern Recognition Receptors) 1231 1232 détectant les motifs moléculaires associés aux pathogènes (les PAMPs pour Pathogen Associated Molecular Patterns) ou à des lésions tissulaires (les DAMPs pour Damage 1233 1234 Associated Molecular Patterns), des voies de signalisation biochimiques ainsi que des 1235 molécules effectrices, agissant directement sur le pathogène (Larsen et al., 2019; Helge Schlüns 1236 & Crozier, 2009).

1237 Les PAMPs sont des composants essentiels et conservés d'un groupe défini de 1238 pathogènes. On distingue par exemple les lipopolysaccharides et les peptidoglycanes de type 1239 Lys des membranes externes des bactéries à Gram négatif, les peptidoglycanes de type DAP 1240 des bactéries Gram positives, les zymosanes des levures, les β-glucanes des champignons ou 1241 encore les ARN doubles-brins de certains virus (Larsen et al., 2019; Sheehan, Farrell, & 1242 Kavanagh, 2020). Quant aux DAMPs, il s'agit de molécules exprimées dans les cellules avant 1243 subi des dommages infectieux ou non, telles que les protéines de choc thermique (en anglais, 1244 HSPs pour Heat Shock Proteins) (Figure 24). Ces structures agissent en tant que ligands sur les 1245 PRRs, au niveau des hémocytes circulant dans l'hémolymphe ou à la surface de différents tissus 1246 tels, que les épithéliums et le corps gras (Larsen et al., 2019; Uvell & Engström, 2007). Ces 1247 récepteurs sont liés à des voies de signalisation biochimiques qui enclenchent deux types de 1248 réponses : les réponses cellulaire et humorale (Satyavathi et al. 2014) (Figure 24). Ces réponses 1249 ne sont cependant pas si tranchées dans la mesure où des facteurs humoraux régulent certaines 1250 réponses cellulaires, et que des réponses cellulaires sont sources de molécules de défense 1251 humorale tels que les radicaux libres et la phénoloxydase.

Figure 24 : Motifs moléculaires associés aux pathogènes (PAMPs pour Pathogen Associated Molecular Patterns) ou aux lésions tissulaires (DAMPs pour Damage Associated Molecular Patterns) déclenchant la réponse immunitaire innée des insectes. S'ils réussissent à entrer dans la cavité corporelle, ces motifs seront détectés par les PRRs (Pathogen Recognition Receptors), déclenchant les différentes réponses immunitaires cellulaires et humorales.

1258

1259 *4.2. Médiation par la réponse cellulaire*

La réponse cellulaire fait référence aux actions exercées par les hémocytes, à savoir la phagocytose, l'encapsulation, la nodulation, la mélanisation et la cascade de la phénoloxydase (Ali Mohammadie Kojour, Han, & Jo, 2020; Larsen et al., 2019; Satyavathi, Minz, & Nagaraju, 2014) (Figure 25). Il est nécessaire de noter que, chez les insectes, les hémocytes, en association avec d'autres organes, synthétisent et stockent également des peptides antimicrobiens, appelés ici Host-Defense Peptides (HDPs) (Larsen et al., 2019).

Les mécanismes immunitaires cellulaires contribuent à l'élimination des pathogènes en les phagocytant, en les lysant, ou encore en les cernant pour les neutraliser (Strand, 2008). Les agents pathogènes de petite taille sont phagocytés. Les agents de plus grande taille déclenchent l'encapsulation tandis que la nodulation fait référence aux agrégats d'hémocytes emprisonnant un grand nombre de bactéries. Ces deux derniers mécanismes impliquent tous deux une action coopérative des hémocytes (Larsen et al., 2019; Satyavathi et al., 2014). Il y a en effet mise en place d'agrégats d'hémocytes à la surface de l'agent pathogène, suivie d'une sécrétion de radicaux libres de l'oxygène et d'azote pour sa destruction (Figure 25). Une sécrétion
simultanée d'agents antioxydants est également observée afin de minimiser les dommages à
l'encontre des hémocytes (Larsen et al., 2019; Satyavathi et al., 2014).

1276 La mélanisation est une combinaison de processus cellulaires et humoraux qui s'effectue lors de l'encapsulation, la nodulation et plus généralement la cicatrisation. Ce mécanisme 1277 1278 permet de traiter les blessures, qu'elles soient liées à des agents pathogènes ou non (Larsen et 1279 al., 2019). Elle est déclenchée de manière locale en réponse à une rupture de la barrière 1280 cuticulaire, ou de manière systémique lors de l'invasion microbienne de l'hémolymphe 1281 (Nakhleh, El Moussawi, & Osta, 2017). Son activation est médiée par la cascade de la 1282 prophénoloxydase, elle-même déclenchée par l'activation de PRRs déployés par les hémocytes 1283 (Larsen et al., 2019) (Figure 25).

1284

1285 Figure 25 : Réponses cellulaires exercées par les hémocytes des insectes lors d'une infection microbienne. 1286 Suite à la reconnaissance des PAMPs effectuée par les PRRs à la surface des hémocytes, quatre types de 1287 réponses cellulaires peuvent être observées. Les pathogènes de petite taille seront majoritairement 1288 phagocytés. Les agents de plus grande taille déclenchent l'encapsulation tandis que la nodulation fait 1289 référence aux agrégats d'hémocytes emprisonnant un grand nombre d'agents pathogènes. Ces deux derniers 1290 mécanismes impliquent tous deux une action coopérative des hémocytes. Suite à une agrégation à la surface 1291 du pathogène, il y aura sécrétion de radicaux libres pour sa destruction. La mélanisation est une combinaison 1292 de processus cellulaires et humoraux et s'effectue durant l'encapsulation, la nodulation et plus généralement 1293 la cicatrisation. Lors d'une invasion microbienne de l'hémolymphe, la cascade de la prophénoloxydase 1294 (ProPO) sera déclenchée par les PRRs, qui déclenche une sécrétion de phénoloxydase (PO) et enfin un dépôt 1295 de mélanine autour du pathogène.

1296 *4.3. Médiation par la réponse humorale*

1297 La réponse humorale correspond majoritairement à la synthèse d'HDPs et autres protéines 1298 impliquées dans la défense de l'organisme via l'activation de voies de signalisation 1299 intracellulaires (Larsen et al., 2019; Sackton et al., 2007; Satyavathi et al., 2014). Elle constitue 1300 le système de défense le plus important chez les insectes, notamment de par sa vitesse d'action. 1301 A titre d'exemples, la réponse humorale est détectée dans les 24 à 48 heures post-infection orale 1302 chez Bombus pascuorum, et dès 2 heures chez Anopheles stephensis (Larsen et al., 2019). Les 1303 deux voies immunitaires les plus décrites sont des voies conservées appelées « Toll » et « IMD 1304 » (Immune deficiency), principalement activées par des infections fongiques et bactériennes 1305 (Bier & Guichard, 2012; Cooper, Chamberlain, & Lowenberger, 2009; Imler & Hoffmann, 1306 2001; Larsen et al., 2019; Lemaitre & Hoffmann, 2007; Sackton et al., 2007; Viljakainen, 1307 2015). D'autres voies de signalisation existent également, telles que les voies c-Jun N-terminal 1308 Kinase (JNK) et JAK/STAT, impliquées majoritairement dans des réponses antivirales et 1309 antifongiques (Agaisse & Perrimon, 2004; Bang, 2019; Geng et al., 2016; Larsen et al., 2019; 1310 Tafesh-Edwards & Eleftherianos, 2020).

1311 Les HDPs produits sont généralement très conservés et sont sécrétés dans l'hémolymphe. Cette production, consécutive à l'activation des gènes, se retrouve dans différents organes tels 1312 1313 que le corps gras (analogue du foie des mammifères) ainsi que les organes en contact avec le 1314 milieu extérieur (systèmes digestif, respiratoire et reproducteur) (Kimbrell & Beutler, 2001; 1315 Satyavathi et al., 2014; Tapadia & Verma, 2012; Tzou et al., 2000; K. Wu et al., 2016). Ainsi, 1316 il a été démontré chez D. melanogaster que des gènes codant pour différents HDPs 1317 s'exprimaient dans les mésentérons (équivalent de l'iléon chez les mammifères), dans les 1318 trachéoles, les glandes salivaires et labellaires, les conduits reproducteurs ainsi que dans les 1319 tubes de Malpighi (équivalent des reins chez les mammifères) suite à une infection par injection 1320 (Tzou et al., 2000). Les HDPs peuvent également être stockés dans les cellules (Kuhn-Nentwig, 2003). L'activation des gènes est alors constitutive et c'est la sécrétion qui est contrôlée. Ceci 1321 1322 a été démontré dans les hémocytes et les glandes salivaires de Pseudacanthotermes spiniger, 1323 où la libération dans l'hémolymphe de la termicine et la spinigérine s'effectue après un 1324 challenge immunitaire (Lamberty et al., 2001).

1325 *4.3.1. <u>La voie Toll</u>*

Les récepteurs activant la voie Toll, appelés TLR pour Toll-Like Receptors ont été découverts initialement chez *D. melanogaster*. Cette voie de signalisation a été définie dans un premier temps comme étant impliquée dans l'établissement de la polarité dorso-ventrale. Elle est également impliquée dans le système immunitaire via la synthèse d'HDPs, notamment dans la réponse aux infections fongiques et de bactéries à Gram positif (Ali Mohammadie Kojour et al., 2020; Bier & Guichard, 2012).

Dans le cas d'une infection bactérienne, il y aura tout d'abord reconnaissance des composants des peptidoglycanes de type Lys des parois bactériennes à Gram positif, par des récepteurs nommés PGRPs (Peptidoglycan Recognition Proteins). Ceci initiera des cascades protéolytiques extracellulaires qui provoqueront le clivage du facteur pro-Spaetzle. Ce ligand Spaetzle ainsi clivé se liera au TLR et activera alors la voie de signalisation intracellulaire Toll (Figure 26).

1338 Le TLR activé recrute en effet un complexe de protéines « DEATH-domain » (dMyD88, 1339 Tube et Pelle), ce qui résulte en la dissociation de la protéine inhibitrice de type IkB Cactus du 1340 facteur de transcription de type κB Dorsal (NF- κB) chez Apis mellifera (Larsen et al., 2019), 1341 ou Dif/Dorsal chez D. melanogaster (Bier & Guichard, 2012). Ce facteur de transcription est 1342 ensuite transloqué dans le noyau et active la transcription de gènes codant pour des HDPs, tels 1343 que la drosomycine et la metchnikowine chez D. melanogaster, ou encore la défensine-1 chez 1344 A. mellifera (Bier & Guichard, 2012; Kimbrell & Beutler, 2001; Larsen et al., 2019; Lourenço, 1345 Florecki, Simões, & Evans, 2018) (Figure 26).

1347 Figure 26 : Détails moléculaires de la voie de signalisation intracellulaire Toll chez Apis mellifera dans le 1348 cas d'une infection bactérienne. La voie Toll est connue pour répondre majoritairement à des infections 1349 causées par des bactéries à Gram positif. Il y a dans un premier temps reconnaissance du peptidoglycane de 1350 type Lys des bactéries à Gram positif par des PGRPs, menant au clivage du facteur pro-Spaetzle via des 1351 cascades protéolytiques extracellulaires. Le ligand Spaetzle se lie ensuite au Toll-Like Receptor (TLR). Ce 1352 dernier recrute un complexe de protéines « DEATH-domain » (dMyD88, Tube et Pelle), menant à la 1353 dissociation de la protéine inhibitrice de type IkB Cactus du facteur de transcription de type kB Dorsal (NF-1354 κB). Ce facteur de transcription est ensuite transloqué dans le noyau et active la transcription de gènes codant 1355 pour des HDPs. Une fois synthétisés, les HDPs sont sécrétés dans l'hémolymphe.

1356

1358 Cette voie de signalisation contrôle la majorité de l'expression de HDPs chez D. 1359 melanogaster, et constitue donc un élément central dans la réponse immunitaire contre les 1360 microorganismes (Ali Mohammadie Kojour et al., 2020). Les PRRs de la voie IMD sont des PGRPs et reconnaissent le peptidoglycane de type DAP, constitutif de la paroi des bactéries à 1361 1362 Gram négatif et de quelques bactéries à Gram positif telles que Bacillus spp. et Listeria spp (Ali 1363 Mohammadie Kojour et al., 2020; Hedengren-Olcott et al., 2004). Le nombre de PRRs et leur 1364 appellation peut varier selon les espèces d'insectes étudiés. Chez la drosophile, on distingue PGRP-LC et PGRP-LE tandis que seul PGRP-LC est retrouvé chez A. mellifera (Ali 1365 1366 Mohammadie Kojour et al., 2020; Evans et al., 2006; H. Schlüns & Crozier, 2007).

1367 A titre d'exemple, la reconnaissance des PAMPs par les PGRPs entraîne l'activation de la protéine adaptatrice IMD. Il existe ensuite deux embranchements distincts menant à 1368 1369 l'activation du NF- κB Relish. Un embranchement mène à la dissociation du NF- κB de la protéine IkB Cactus via le complexe IKK, lui-même précédemment activé par la protéine 1370 1371 TAK1. Le second embranchement mène au clivage du NF- kB par la protéine FADD, 1372 précédemment activée par la caspase Dredd. Relish sera ensuite transloqué dans le novau et 1373 activera la transcription de gènes codant pour des HDPs tels que l'abaécine et l'hyménoptaécine 1374 chez A. mellifera, ou la diptéricine chez D. melanogaster (Bier & Guichard, 2012; Cooper et al., 2009; Costa, Jan, Sarnow, & Schneider, 2009; Kimbrell & Beutler, 2001; Satyavathi et al., 1375 1376 2014; H. Schlüns & Crozier, 2007; Tzou et al., 2000) (Figure 27).

1378 Figure 27 : Détails moléculaires de la voie de signalisation intracellulaire IMD dans le cas d'une infection 1379 bactérienne. La voie IMD est connue pour répondre majoritairement aux infections par des bactéries à Gram 1380 négatif. La reconnaissance du peptidoglycane de type DAP des bactéries à Gram négatif par les PGRPs 1381 entraîne l'activation de la protéine adaptatrice IMD. Il existe ensuite deux embranchements distincts menant 1382 à l'activation du NF- κB Relish. Un embranchement mène à la dissociation du NF- κB de la protéine I κB 1383 Cactus via le complexe IKK, lui-même précédemment activé par la protéine TAK1.Cette dernière est 1384 également connue pour être impliqué dans la voie de signalisation cellulaire JNK. Le second embranchement 1385 mène au clivage du NF- kB par la protéine FADD, précédemment activée par la caspase Dredd. Relish est 1386 ensuite transloqué dans le noyau et active la transcription de gènes codant pour des HDPs. Suite à leur 1387 synthèse, les HDPs sont sécrétés dans l'hémolymphe.
4.3.3. <u>Host Defense Peptides de Drosophila melanogaster et peptides de venin de</u> Tetramorium bicarinatum

1389

1390 Les alignements effectués lors de l'étude des précurseurs de T. bicarinatum ont montré que 1391 la drosomycine, la metchikowin et la cécropine B issus de l'hémolymphe de D. melanogaster 1392 se positionnent dans les mêmes clusters que certains précurseurs de toxines peptidiques des 1393 superfamilles A (i.e. U_3) et B (i.e. U_{12} , U_{13} , U_{14} , U_{15} et U_{16}) (Touchard et al., 2018). La 1394 metchnikowin et la cécropine B sont des peptides linéaires et cationiques à action cytolytique 1395 dont les synthèses sont respectivement activés par les voies Toll et IMD suite à une infection 1396 fongique ou bactérienne (Gram positive et négative) (Brady, Grapputo, Romoli, & Sandrelli, 1397 2019; Ekengren & Hultmark, 1999; Tonk et al., 2019; Q. Wu, Patočka, & Kuča, 2018). La 1398 drosomycine est également un peptide cationique dont la synthèse est activée à la fois par la 1399 voie Toll et la voie IMD suite à une infection fongique (Ferrandon et al., 1998; Hanson & 1400 Lemaitre, 2020), et présente une structure plus complexe en raison de la présence de 4 ponts disulfures. Ces derniers lui confèrent une conformation $CS\alpha\beta$ similaire à celle adoptée par les 1401 1402 défensines (Q. Wu et al., 2018; Zhang & Zhu, 2009).

Les précurseurs de ces HDPs sont composés d'une séquence signal longue d'une vingtaine d'acides aminés, suivie d'une région propeptide courte (i.e. 2 à 5 acides aminés) puis de la partie mature sécrétée (Figure 28). Bien que montrant de faibles identités de séquences (i.e. 14 à 20%) avec les précurseurs de toxines du venin de *T.bicarinatum* (Touchard et al., 2018), les précurseurs de HDPs montrent la même structure. Le caractère linéaire et cationique des séquences matures est également retrouvé chez de nombreuses toxines du venin de cette fourmi.

1409 Les phénomènes de recrutement de gènes de l'immunité afin de produire de nouvelles 1410 toxines de venin ont déjà été démontrés chez l'ornithorynque pour les toxines de type défensine 1411 (Cf. partie 1.4.2) (Whittington et al., 2008). Il a également été montré chez Apis cerana que le 1412 gène codant le peptide du venin, AcSecapin-1, s'exprime en dehors du système vulnérant, et 1413 est surexprimé en cas de challenge immunitaire, montrant que cette toxine est un effecteur de 1414 l'immunité innée (Lee, Kim, Yoon, Choi, & Jin, 2016). Ainsi, compte tenu des activités 1415 bactériolytiques et immunomodulatrices présentées respectivement par les peptides 1416 Bicarinaline et P17 du venin de T. bicarinatum (Benmoussa et al., 2017; Rifflet et al., 2012), et de l'expression des gènes les codant en dehors du système vulnérant (Cf. partie 2.5 de ce 1417 1418 chapitre), il semble probable que certains peptides du venin de cette fourmi soient en lien avec 1419 le système immunitaire inné.

1420

Figure 28: Structure et séquences des précurseurs des Host Defense Peptides de l'hémolymphe de Drosophila melanogaster et des toxines du venin de Tetramorium bicarinatum. Les résidus conservés sont surlignés en cyan tandis que les résidus identiques sont surlignés en magenta. Les résidus similaires sont surlignés en bleu. Les régions signal sont soulignées en noir tandis que le triangle noir symbolise le clivage entre la région propeptide et le peptide mature. Modifié à partir de (Touchard et al., 2018).

1427 **5.** Objectifs généraux

1428 Les venins de Formicidae constituent une source importante de peptides bioactifs. Seuls 1429 cinq peptidomes complets ont été caractérisés grâce la méthode intégrative vénomique chez des fourmis appartenant aux sous-familles phylogénétiques des Paraponerinae, Ponerinae, 1430 1431 Myrmicinae et Myrmeciinae (Aili et al., 2020; Kazuma et al., 2017; Mariano et al., 2019; Radis-Baptista et al., 2020; Robinson et al., 2018; Touchard et al., 2018). Ces études ont révélé que 1432 1433 les toxines peptidiques décrites dans ces venins possédaient des séquences signal similaires à 1434 celles trouvées dans les venins d'autres Hyménoptères Aculéates. Ceci suggère que les toxines 1435 peptidiques de ces organismes appartiendraient à une même superfamille de gènes, les 1436 Aculeatoxines, et auraient donc dérivé d'un nombre réduit de précurseurs (Robinson et al., 1437 2018). L'étude du venin de Tetramorium bicarinatum a également montré l'existence de deux 1438 autres superfamilles de précurseurs (Touchard et al., 2018). De plus, les gènes codant pour 1439 certaines myrmecitoxines du venin de cette fourmi s'expriment en dehors du système vulnérant, 1440 suggérant l'existence d'un lien entre certaines toxines du venin et d'autres fonctions 1441 physiologiques telles que l'immunité innée.

Ces résultats posent les questions des mécanismes impliqués dans la diversification des toxines peptidiques de venins de fourmis, ainsi que de leur potentiel rôle en dehors de la fonction venimeuse. Pour répondre à ces problématiques, le premier objectif de ce travail de thèse est d'apporter un aperçu de la diversité peptidique contenue dans les venins de fourmis myrmicines. Pour ceci, les peptidomes des venins de sept fourmis appartenant à la sous-famille des *Myrmicinae* et d'une fourmi appartenant à la sous-famille des *Pseudomyrmecinae* ont été

- caractérisés. Ce travail a mené à l'identification de 100 toxines matures et de leurs précurseurs.
 Ces résultats font l'objet d'un chapitre intitulé « Diversité moléculaire de peptides de venins de
- 1450 fourmis myrmicines » et ont mené à l'écriture de trois articles dont un en préparation :
- 1451 > Article 1 : Barassé, V.; Touchard, A.; Téné, N.; Tindo, M.; Kenne, M.; Klopp, C.;
 1452 Dejean, A.; Bonnafé, E.; Treilhou, M. The peptide venom composition of the fierce
 1453 stinging ant *Tetraponera aethiops* (Formicidae: Pseudomyrmecinae). *Toxins (Basel)*.
 1454 2019, 11.
- 1455 > Article 2 : Touchard, A.; Aili, S.R.; Téné, N.; Barassé, V.; Klopp, C.; Dejean, A.; Kini,
 1456 R.M.; Mrinalini, M.; Coquet, L.; Jouenne, T.; et al. Venom peptide repertoire of the
 1457 European myrmicine ant *Manica rubida*: identification of insecticidal toxins. *J.* 1458 *Proteome Res.* 2020, acs.jproteome.0c00048.
- 1459 > Article 3 : Barassé, V. ; Téné, N. ; Klopp, C. ;Tysklind, N. ; Lalägue, H. ; Orivel, J. ;
 1460 Troispoux, V. ; Petitclerc, F. ; Tindo, M. ;Kenne, M. ; Treilhou, M. ; Bonnafé, E. ;
 1461 Touchard, A. Myrmicine ant venoms: first insights into their peptidic diversity. (*in*1462 *prep.*)
- Le second objectif de ce travail de thèse consiste à explorer le lien potentiel entre les toxines de venin et le système immunitaire inné individuel de la fourmi *T. bicarinatum*. Cette étude a mis en évidence la présence de transcrits dans des organes impliqués dans l'immunité innée des insectes, ainsi qu'une production de deux peptides dans le corps gras suite à un challenge immunitaire. Ces résultats ont mené à l'écriture du troisième chapitre de ce manuscrit : « Lien entre les toxines peptidiques et la fonction immunitaire ».

1472

Chapitre II : Diversité moléculaire de peptides de venins de fourmis myrmicines

1473

1474 L'objectif de ce chapitre est d'apporter un premier aperçu de la diversité peptidique des 1475 venins de fourmis myrmicines, une sous-famille de fourmis jusqu'à présent délaissée dans les 1476 études vénomiques. La sous-famille des Myrmicinae constituent de loin la sous-famille la plus 1477 importante en nombre d'espèces (i.e. 6500 décrites à ce jour). Elles représentent ainsi un clade 1478 hyperdiversifié, occupant la plupart des habitats terrestres et présentant de grandes variations 1479 dans leur écologie, la structure de leur colonie, leurs caractéristiques morphologiques et leur 1480 régime alimentaire (Ward, Brady, Fisher, & Schultz, 2015). La diversification de cette sous-1481 famille a débuté il y a environ 100 millions d'années, et une analyse phylogénétique moléculaire 1482 a récemment permis d'organiser les espèces de *Myrmicinae* en six tribus monophylétiques (i.e. 1483 Crematogastrini, Attini, Solenopsidini, Stenammini, Pogonomyrmecini, Myrmicini) (Ward et 1484 al., 2015) (Figure 29). Malgré l'omniprésence de cette sous-famille de fourmis à travers la 1485 planète, un seul peptidome complet de venin de fourmi myrmicine a été décrit à l'heure actuelle (Touchard et al., 2018) (Cf. parties 2.5 et 3 – État de l'art). Dans ce chapitre nous avons cherché 1486 1487 à caractériser les profils peptidiques des venins de nouvelles espèces de fourmis myrmicines en 1488 nous appuyant sur un échantillonnage rationnel prenant en compte la diversité phylogénétique. 1489 Ainsi, un ou deux représentants de chaque tribu des Myrmicinae ont été sélectionnés et récoltés, 1490 en plus d'une espèce de fourmi pseudomyrmecine, une sous-famille proche. (Figure 29). Les 1491 espèces ont été essentiellement choisies sur des critères d'accessibilité en termes de récoltes, et 1492 présentent une gamme variée d'écologie et d'utilisation de leur venin. Si certaines des espèces 1493 sélectionnées ont des venins essentiellement défensifs (e.g. Tetraponera aethiops, 1494 Pogonomyrmex californicus), d'autres utilisent majoritairement leur venin dans un but de 1495 prédation (i.e. Stenamma debile, Daceton armigerum) (Figure 29).

La fourmi *Tetramorium africanum* représente la tribu la plus diversifiée en termes de nombre d'espèces, les Crematogastrini (Borowiec et al., 2020; Ward et al., 2015). Originaire des régions tropicales d'Afrique de l'Ouest, cette fourmi est territoriale et arboricole. Elle construit son nid à partir des feuilles de son arbre-hôte (e.g. *Lophira alata, Anthocleista vogelii*), qu'elle protège des herbivores notamment grâce à un comportement agressif et une piqûre défensive très douloureuse (Dejean et al., 2016).

1502La fourmi Daceton armigerum est une fourmi arboricole néotropicale de la tribu des1503Attini. Cette espèce utilise son venin uniquement dans le but de paralyser les proies de grandes

tailles difficiles à maitriser par la seule force des mandibules. Elle possède en effet des
mandibules hypertrophiées (i.e. trap-jaw) très efficaces pour capturer des proies. Le venin est
rarement utilisé dans un but défensif et occasionne seulement une légère démangeaison
lorsqu'il inoculé à l'Homme (Dejean et al., 2012).

1508

Figure 29 : Modèles d'études, positionnement dans la famille des Formicidae et détails de leur écologie. (A)
Position des sous-familles des *Myrmicinae* et des *Pseudomyrmicinae* dans le clade des Formicoïdes. (B)
Détail des tribus phylogénétiques composant les *Myrmicinae* et appartenances phylogénétiques des espèces
étudiées. Les fourmis arboricoles sont symbolisées par l'arbre. Les carrés rouges dénotent une utilisation
essentiellement offensive du venin (i.e. prédation) tandis que les carrés verts indiquent une utilisation
essentiellement défensive. Les carrés contenant les deux couleurs indiquent donc un usage double du venin
(i.e. prédation et défense).

La fourmi de feu *Solenopsis saevissima*, représentante des Solenopsidini, est une espèce de fourmi agressive. Très abondante dans les milieux ouverts de la forêt amazonienne (e.g. savanes, bords de rivières), elle est considérée en Amérique du Sud comme un ravageur (Dejean et al., 2015; Fox et al., 2010). Son venin, très douloureux et allergène pour les vertébrés, est riche en composés alcaloïdiques. Les allergènes identifiés sont des protéines et certaines études
suggèrent également la présence de peptides (Dos Santos Pinto et al., 2012).

1522 La tribu des Pogonomyrmecini montre quant à elle un nombre réduit de genres, 1523 comprenant pour la plupart des espèces granivores. L'espèce sélectionnée pour cette tribu, 1524 Pogonomyrmex californicus, est une fourmi de taille moyenne, vivant dans les régions 1525 désertiques des États-Unis (Californie, Arizona). Les fourmis du genre Pogonomyrmex utilisent 1526 un venin douloureux et très toxique pour les vertébrés afin de protéger leurs réserves de graines 1527 des rongeurs (J. O. Schmidt & Blum, 1978a; P. J. Schmidt, Sherbrooke, & Schmidt, 1989). Un 1528 effet hallucinogène du venin de P. californicus a été noté, suscitant son utilisation dans des contextes thérapeutiques et religieux par les groupes indigènes de Californie du Sud (Groark, 1529 1530 1996; Helmkampf, Mikheyev, Kang, Fewell, & Gadau, 2016). Cette particularité suggère que 1531 certaines toxines sont capables d'interagir avec des récepteurs du système nerveux de l'Homme.

L'espèce *Stenamma debile* est une fourmi de petite taille, cryptique des milieux forestiers des régions tempérées septentrionales. Cette espèce discrète utilise son venin uniquement pour chasser et capturer de petits arthropodes de la litière (Branstetter, 2012; Lenoir, Khalil, Châline, & Hefetz, 2018).

La tribu des Myrmicini est également endémique des régions tempérées Nord et regroupe les deux genres *Manica* et *Myrmica*. Ces fourmis communément appelées « fourmis rouges » en Europe, utilisent leur venin dans des contextes de défense, bien qu'il soit également utilisé pour la capture des proies (Borowiec et al., 2020; Heep, Klaus, et al., 2019; Heep, Skaljac, et al., 2019; Lenoir, Devers, Marchand, Bressac, & Savolainen, 2010).

1541 La fourmi Tetraponera aethiops (Pseudomyrmecinae) est une espèce arboricole ayant 1542 développé une relation mutualiste avec une plante hôte (i.e. myrmécophyte), Barteria fistulosa 1543 (Passifloraceae). Cette espèce utilise ainsi essentiellement son venin pour protéger le myrmécophyte contre les herbivores vertébrés et invertébrés. La caractérisation de ce 1544 peptidome a mené à l'identification de 9 précurseurs de pseudomyrmecitoxines, dont cinq 1545 1546 toxines linéaires, trois homodimères et un hétérodimère. Toutes les pseudomyrmecitoxines 1547 identifiées sont polycationiques. Certaines d'entre elles ont de plus montré des similarités de 1548 séquences avec des myrmecitoxines connues pour avoir des activités insecticides et 1549 nociceptives (Dekan et al., 2017; Robinson et al., 2018). L'analyse des région prépro a 1550 également montré que toutes les pseudomyrmecitoxines du venin de T. aethiops appartiennent 1551 à la superfamille A, précédemment décrite chez Tetramorium bicarinatum (Touchard et al., 1552 2018) (Tableau III).

1553 La caractérisation des peptidomes des sept venins de fourmis myrmicines a mené à l'identification de 91 précurseurs de myrmicitoxines. Ces venins sont en majorité dominés par 1554 1555 des peptides linéaires, amphiphiles et cationiques. Néanmoins, plusieurs myrmicitoxines 1556 présentent également un à trois ponts disulfures. Parmi celles-ci, quatre peptides possèdent un 1557 domaine de type EGF (Epidermal Growth Factor), et deux d'entre elles présentent également 1558 une O-glycosylation post-traductionnelle. Ce type de toxine n'avait jamais été décrit dans les 1559 venins de fourmis. Notre étude a également permis d'identifier pour la première fois dans cette 1560 sous-famille phylogénétique la présence de toxines dimériques dans le venin de la fourmi D. 1561 armigerum.

Sur la base de leurs séquences matures, trente-sept familles de myrmicitoxines ont été définies. Cette répartition a permis de rendre compte de la diversité des toxines peptidiques présentes dans les venins des *Myrmicinae*, tout en mettant en évidence les compositions hétérogènes de ces venins (Table III). L'analyse des séquences signal a permis de répartir ces 91 myrmicitoxines en 8 superfamilles de précurseurs (i.e. A₁, A₂, A₃, A₄, B₁, B₂, C₁ et C₂).

1567 Ces résultats ont conduit à la publication de deux articles, et à la préparation d'un
1568 troisième :

1569

Barassé, V.; Touchard, A.; Téné, N.; Tindo, M.; Kenne, M.; Klopp, C.; Dejean, A.; Bonnafé, E.; Treilhou, M. The peptide venom composition of the fierce stinging ant *Tetraponera aethiops* (Formicidae: Pseudomyrmecinae). *Toxins (Basel).* 2019, *11*.

1573

1574 > Touchard, A.; Aili, S.R.; Téné, N.; Barassé, V.; Klopp, C.; Dejean, A.; Kini, R.M.;
 1575 Mrinalini, M.; Coquet, L.; Jouenne, T.; et al. Venom peptide repertoire of the european
 1576 myrmicine ant *Manica rubida*: identification of insecticidal toxins. *J. Proteome Res.* 1577 2020, 19.

1578

Barassé, V.; Téné, N.; Klopp, C.; Tysklind, N.; Lalägue, H.; Orivel, J.; Troispoux,
 V.; Petitclerc, F.; Tindo, M.; Kenne, M.; Treilhou, M.; Bonnafé, E.; Touchard, A.
 Myrmicine ant venoms : first insights into their peptidic diversity. (*in prep.*)

Tableau III : Composition des peptidomes de venins de fourmis pseudomyrmecine et myrmicines. PTMs : modifications post-traductionnelles.

Espèces	Familles de toxines	Monomères		Homodimères		Hétérodimères	PTMs	Superfamilles de précurseurs	
	matures	0 CC	1 CC	3 CC	1 CC	3CC	1 CC		
Tetraponera aethiops	5	5			2	1	1	C-ter NH ₂	Α
Manica rubida	9	9	3	1				C-ter NH ₂ , O-glycosylation	A1, A2, A3, A4, B1, B2, C1, C2
Myrmica ruginodis	8	11	10	4				C-ter NH ₂ , O-glycosylation	$A_1, A_2, A_3, A_4, B_1,$ B_2, C_1, C_2
Pogonomyrmex californicus	7	11	3	2				C-ter NH ₂	A ₁ , A ₂ , A ₃ , B ₂ , C ₁ , C ₂
Stenamma debile	5	4	2					C-ter NH ₂	A_1, A_2, A_3, C_1
Tetramorium africanum	18	14	13					C-ter NH ₂	$A_1, A_2, A_3, B_1, B_2,$ C_1
Daceton armigerum	1				3		1	-	A 3

The Peptide Venom Composition of the Fierce Stinging Ant *Tetraponera aethiops* (Formicidae: Pseudomyrmecinae)

Valentine Barassé ^{1,*}, Axel Touchard ¹, Nathan Téné ¹, Maurice Tindo ², Martin Kenne ², Christophe Klopp ³, Alain Dejean ^{4,5}, Elsa Bonnafé ¹ and Michel Treilhou ¹

- ¹ EA-7417, Institut National Universitaire Champollion, Place de Verdun, 81012 Albi, France; axel.touchard2@gmail.com (A.T.); nathan.tene@univ-jfc.fr (N.T.); elsa.bonnafe@univ-jfc.fr (E.B.); michel.treilhou@univ-jfc.fr (M.T.)
- ² Laboratory of Animal Biology and Physiology, Faculty of Science, University of Douala, P.O. Box 24157, Douala, Cameroon; tindodouala@yahoo.com (M.T.); medoum68@yahoo.fr (M.K.)
- ³ Unité de Mathématique et Informatique Appliquées de Toulouse, UR0875, INRA Toulouse, 31326 Castanet-Tolosan, France; christophe.klopp@inra.fr
- ⁴ Ecolab, Université de Toulouse, CNRS, INPT, UPS, 31400 Toulouse, France; alain.dejean@wanadoo.fr
- ⁵ CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRA, Université des Antilles, Université de Guyane, 97310 Kourou, France
- * Correspondence: valentine.barasse@gmail.com; Tel.: +33-563-481-700

Received: 24 October 2019; Accepted: 11 December 2019; Published: 14 December 2019

Abstract: In the mutualisms involving certain pseudomyrmicine ants and different myrmecophytes (i.e., plants sheltering colonies of specialized "plant-ant" species in hollow structures), the ant venom contributes to the host plant biotic defenses by inducing the rapid paralysis of defoliating insects and causing intense pain to browsing mammals. Using integrated transcriptomic and proteomic approaches, we identified the venom peptidome of the plant-ant *Tetraponera aethiops* (Pseudomyrmecinae). The transcriptomic analysis of its venom glands revealed that 40% of the expressed contigs encoded only seven peptide precursors related to the ant venom peptides from the A-superfamily. Among the 12 peptide masses detected by liquid chromatography-mass spectrometry (LC–MS), nine mature peptide sequences were characterized and confirmed through proteomic analysis. These venom peptides, called pseudomyrmecitoxins (PSDTX), share amino acid sequence identities with myrmeciitoxins known for their dual offensive and defensive functions on both insects and mammals. Furthermore, we demonstrated through reduction/alkylation of the crude venom that four PSDTXs were homo- and heterodimeric. Thus, we provide the first insights into the defensive venom composition of the ant genus *Tetraponera* indicative of a streamlined peptidome.

Keywords: defensive venom; dimeric peptides; peptidome; Tetraponera aethiops

Key Contribution: The presence of dimeric scaffolds, found in the venom of all plant-ant species investigated to date, suggests that they are an important feature in defense.

1. Introduction

Venoms are biochemical arsenals developed by animals to defend themselves and/or capture prey [1]. Studies on arthropod (e.g., scorpions, spiders, centipedes, and insects) venoms show a majority of proteins and peptides which exhibit variable amino acid sequences and tridimensional structures in their mature form [2,3]. Although ants are a dominant feature in terms of number of individuals and biomass in most terrestrial ecosystems, few extensive studies have been conducted on

their venoms. Most of these studies have focused on emblematic and/or problematic species whose stings are painful and can cause allergies [4–6], with the major goal being to relieve the symptoms prompted by these venoms. Consequently, the allergenic venoms of fire ants of the genus *Solenopsis* (Myrmicinae), *Pachycondyla* spp. (Ponerinae), or Australian *Myrmecia* (Myrmeciinae) have especially been studied [5–9]. Also, the painful venoms of the bullet ant *Paraponera clavata* and of ponerine ants of the genera *Dinoponera* and *Neoponera* have been the subject of several studies which led to the isolation and characterization of tens of bioactive peptides [10,11].

In the past, the investigation of ant venoms was greatly limited by the difficulty in gathering large amounts of venom due to the small size of these insects. However, the use of new techniques to collect venoms now permits large amounts of ant venom to be quickly obtained [12,13]. Furthermore, the use of multi-omics strategies to study ant venoms recently revealed the whole peptidome of three ant species belonging to the subfamilies Ponerinae, Myrmicinae, and Myrmeciinae, allowing a high-throughput identification of novel peptides. The rise of such an integrated methodology now allows us to undertake the in-depth exploration of new ant venoms. The comprehensive inclusion of ant species from different subfamilies and with different ecologies should enhance our understanding of the molecular diversification of ant venom peptidomes and then lead to further discoveries.

To date, only six peptides have previously been identified from Pseudomyrmecinae venoms [14], but earlier studies revealed that venoms from this subfamily are rich in peptides even though the peptide composition is greatly influenced by both the hunting habits and the nesting mode of the species [15]. Thus, in order to contribute to the cataloguing of peptide toxins from the main lineage of ants, the present study focuses on the description of the venom peptidome of Tetraponera aethiops, Smith, F., 1877 (Pseudomyrmecinae). Tetraponera aethiops is an arboreal plant-ant involved in an obligatory mutualistic association with the myrmecophyte Barteria fistulosa (Passifloraceae), myrmecophytes being plants sheltering colonies of specialized "plant-ant" species in hollow structures called domatia [16]. Here, the colonies, housed in the plant's hollow twigs, feed on honeydew exudates from coccids tended inside the domatia and on symbiotic fungi. In return, the workers fiercely protect the host myrmecophyte from competing vines, and herbivorous insects and mammals [17–19]. Known to be very painful to humans, T. aethiops venom is rarely used to capture prey. Instead, it is essentially employed to defend its host tree since most of the stung, paralyzed, or killed defoliating insects are discarded rather than being retrieved to be eaten [20]. We first aimed to verify if the venom of this species contains dimeric peptides as is known for the pseudomyrmecine plant-ant *Pseudomyrmex* [14,15]. Based on previous investigations on defensive venoms [1], we hypothesized that such a specialized mutualistic interaction between *T. aethiops* and *B. fistulosa* is likely to have strongly affected the ant venom composition in favor of the production of dimeric peptides to ensure host plant protection rather than prey capture.

2. Results

2.1. Mass Spectrometry of Tetraponera Aethiops Venom

The initial LC–MS analysis was performed on an LCQ-ion trap Advantage mass spectrometer in order to establish the list of the masses of the most abundant peptides in *Tetraponera aethiops* venom (Table 1). Before sequence determination, each peptide detected was tentatively named based on the initials of the genus and species followed by their molecular weight (i.e., Ta-XXXX) as described by Johnson et al. [21]. The fully sequenced peptides were then renamed in accordance with the nomenclature developed for venom peptides [22] and we used pseudomyrmecitoxin (PSDTX) to define the venom peptides of pseudomyrmecine ants [23]. The total ion chromatogram (TIC) analysis of the venom of *T. aethiops* revealed several peaks with 12 masses corresponding to peptides (Figure 1). These peptides were relatively large, exhibited molecular weights ranging from 2662 to 5774 Da, and eluted at retention times between 14.55 and 50.07 min—which is equivalent to 15 and 56% acetonitrile in the mobile phase. The relative abundance of these peptides is reported in Table 1. The venom peptidome was mostly dominated by a single peptide, U₄-PSDTX-Ta1a, which accounts for 66.41% of the venom

peptide composition. Interestingly, peaks eluting from 31 to 45 min may depend on non-peptide compounds such as large proteins (MW > 10 KDa). The peak eluting from 54 to 55 min was dominated by several low molecular weight compounds co-eluting with the twelfth peptide (U₅-PSDTX-Ta1a) found at trace levels (Table 1).

Retention Time (min)	Mass (Da)	Relative Abundance (%)	Temporary Name	Peptide Toxin
14.55	5773.80	0.50	Ta-5773	
20.50	2996.28	0.03	Ta-2996	
22.18	5458.56	0.60	Ta-5458	
22.24	2663.58	0.10	Ta-2662	U ₁ -PSDTX-Ta1a
23.00	2877.72	0.28	Ta-2875	U ₂ -PSDTX-Ta1a
23.64	5441.80	11.98	Ta-5438	U ₂ -PSDTX-Ta1b (homodimer)
25.23	5753.64	9.33	Ta-5750	U ₂ -PSDTX-Ta1a (homodimer)
25.50	4470.96	1.96	Ta-4468	U ₃ -PSDTX-Ta1a
26.00	5683.60	7.24	Ta-5680	U ₂ -PSDTX-Ta1a/U ₂ -PSDTX-Ta1c
26.75	5610.63	1.27	Ta-5608	U ₂ -PSDTX-Ta1c (homodimer)
50.07	3568.28	66.41	Ta-3566	U ₄ -PSDTX-Ta1a
54.93	3615.81	*	Ta-3615	U ₅ -PSDTX-Ta1a

Table 1. Peptide mass fingerprinting of *Tetraponera aethiops* venom. List of peptide masses detected through LC–MS using an LCQ-ion trap Advantage mass spectrometer.

* found at trace levels.

Figure 1. Positive mode total ion chromatogram (TIC) of *T. aethiops* venom using LCQ Advantage ESI mass spectrometer. Crude venom was separated by C_{18} RP-HPLC using an ACN gradient. The mobile phase was 0.1% aqueous formic acid (solvent A) and 0.1% formic acid in acetonitrile (solvent B). The peptides were eluted using a linear gradient from 0 to 50% of solvent B during 45 min, then from 50 to 100% during 10 min, and finally held for 5 min at a 250 µL min⁻¹ flow rate. Note that 'U₄-PSDTX-Ta1a' accounts for 66.41% of the venom peptide content.

The crude venom was submitted to LC–MS/MS using an Orbitrap mass spectrometer for a de novo sequencing which yielded 266 sequence tags with an ALC score higher than 60%. These MS/MS sequences were then used to confirm and identify the putative peptide sequences inferred from the transcriptomic analysis of the *T. aethiops* venom gland transcriptome. Orbitrap mass spectrometry analysis confirmed the presence of U₅-PSDTX-Ta1a in this venom, albeit in a low amount.

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium [24] via the PRIDE [25] partner repository with the dataset identifier PXD016337.

2.2. Venom Gland Transcriptome and Predictive Precursor Sequences

The RNA sequencing of the *T. aethiops* venom apparatus resulted in the acquisition of 188,907,225 demultiplexed raw reads with a length of 150-bp. They were assembled de novo using Oases graph assembler, which resulted in 16,047 contigs. Among them, 230 transcripts were expressed to a frequency higher than or equal to 100,000 hits and were subsequently addressed using the NCBI blastp program for functional annotations (Table S1). These annotated transcripts were classified into four categories (i.e., venom peptides, venom proteins, protein maturation, and others; Figure 2). This permitted us to deduce that venom peptide toxins have high transcription levels accounting for 40% of the most expressed transcripts by the venom glands (400,732 Reads Per Million (RPM)). Thus, we identified six putative venom peptide precursors. They shared an average of 52% identity, allowing us to define the following consensus sequence from the alignment of the prepro-regions: MXLSYXXLXLXVXFXLAIXFXPXXXAXAXSVGMADAEXXALAESXANALADAXP.

Figure 2. Proportions of addressed functions of the 230 most expressed transcripts (\geq 100,000 hits) from *T. aethiops* venom glands. Functional annotations were made with the NCBI blastp program. The category "Others" groups functions involved in cellular metabolism. Contigs coding for venom peptides accounted for 40% of the transcripts expressed by the venom glands. Seventeen percent of the transcripts coded for venom proteins such as venom allergens and phospholipases, and 3% of the transcripts were dedicated to protein maturation. The contigs names and functions are presented in detail in Supplementary Data (Table S1).

Tetraponera aethiops peptide precursors seemed to be related to other venom peptide precursors reported for ants. Indeed, this consensus sequence shared 43%, 35%, 52%, and 48% sequence identity with consensus prepro-sequences obtained from studies on *Odontomachus monticola* [26], *Myrmecia pilosula* [27], *Myrmecia gulosa* [28], and *Tetramorium bicarinatum* venoms [29], respectively (Figure 3). Unlike prepro-regions, mature regions of these precursors exhibited much more intra- and interspecific amino acid sequence variabilities (Figure 4). The complete cDNA sequences of venom peptide precursors from *Tetraponera aethiops* venom were submitted to GenBank (for accession numbers, see the legend to Figure 4).

Species		
Tetraponera aethiops	MXL-SYXXLXLXVXFXLAIXEXPXXXAXAXXXVGMADAEXXALAESXANALADAXP	
Odontomachus monticola	MKP-SXLXLAFLVVFMMAIMYNSVOAXAXADADAXAXAXAXAXALAEA	
Myrmecia pilosula	MKT-SCLLTTLATTEVLTTWHAPNVRAKALADPESDAVCEADAVCEADPXAEAXXNA-	
Myrmecia gulosa	MKL-SXLXLXLXATIXX-LXIPTXXXXPXXEAKALAXXEXDAXGFADAFGEADXEXXXDAFGEADAFGEA	D <mark>a</mark>
Tetramorium bicarinatum (Superfamily A)	MKLLSFLXLAXAXIFVSGMXIXYXPXXXAXAXADADADAXAAAXADADALAEASADA	J <mark>a</mark>

Figure 3. Alignment of consensus prepro sequences from pilosulin-like ant venom peptides. The alignment was generated with the Muscle program in Seaview version 4.6.1 and edited using BOXSHADE version 3.2. Identical residues are highlighted in magenta. Similar residues are highlighted in blue. The consensus sequence of the prepro-region of *Tetraponera aethiops* venom peptides shared 43%, 35%, 52%, and 48% with the consensus prepro-regions sequences obtained from previous studies on *Odontomachus monticola* [26], *Myrmecia pilosula* [27], *Myrmecia gulosa* [28], and *Tetramorium bicarinatum* (Superfamily A) [29], respectively.

Figure 4. Alignments of *T. aethiops* venom peptide precursors with pilosuline-like peptides from *Odontomachus monticola* [26], *Myrmecia gulosa* [28], *Myrmecia pilosula* [27], and *Tetramorium bicarinatum* (Superfamily A) [29] venoms. Alignments were generated with the Muscle program in Seaview version 4.6.1 and edited using BOXSHADE version 3.2. The prepro- and mature regions were aligned separately. Identical residues are highlighted in magenta and similar residues are highlighted in blue. The black triangle indicates the cleavage site between the prepro-regions and the mature peptides. The black line marks the signal regions. Post-translational modifications are not shown. The prepro-regions showed themselves to be conserved, whereas mature peptide sequences were highly variable. *Tetraponera aethiops* venom peptide precursor cDNA sequences were submitted to GenBank, with the following accession numbers: U₁-PSDTX-Ta1a (MN607166), U₂-PSDTX-Ta1a (MN607167), U₂-PSDTX-Ta1a (MN607167), u₂-PSDTX-Ta1a (MN607167), u₃-PSDTX-Ta1a (MN607167), u₄-PSDTX-Ta1a (MN607167), and U₅-PSDTX-Ta1a (MN607171).

Several venom proteins were also expressed in *T. aethiops* venom glands including phospholipases and venom allergens accounting for 17% of the venom gland expression (164,978 RPMs). Additionally, 3% of the transcripts relied on protein maturation (33,782 RPMs) with enzymes implicated in the formation of disulfide bonds such as protein disulfide isomerase (3347 RPMs). In keeping with protein maturation, an angiotensin-converting enzyme (521 RPMs) and two types of venom Dipeptidylpeptidase IV (2356 RPMs and 736 RPMs) were identified within the transcripts. These enzymes are likely involved in the processing of bioactive peptides [30,31].

RNAseq data are available on the European Nucleotide Archive website (https://www.ebi.ac.uk/ena) under the following study accession number: PRJEB35699.

2.3. Molecular Features of Pseudomyrmecitoxins

The combination of LC–MS analysis, de novo sequencing-based mass spectrometry and the RNA sequencing of the venom glands allowed us to assign five linear peptide sequences (i.e., U_1 -PSDTX-Ta1a, U_2 -PSDTX-Ta1a, U_3 -PSDTX-Ta1a, U_4 -PSDTX-Ta1a and U_5 -PSDTX-Ta1) to the twelve masses initially detected through LC–MS (Table 2). Additionally, the transcriptomic data led to the identification of three highly expressed peptide transcripts (i.e., 178,027; 148,472, and 144,674 RPMs) having very similar sequences with calculated masses in the range 2723–2877 Da and bearing an odd number of cysteines (i.e., one and three).

Toxin Name	Mass (Da)	RPMs	Sequence	Features	Net Charge	Hydrophobic aa (%)	pI
U ₁ -PSDTX- Ta1a	2662.54	118,602	TLTNMSLREILEKLGIKIPPGLNI	Monomer	1.0	41.67	8.26
U ₂ -PSDTX- Ta1a	2875.47	148,472	DWKNTAKEWGKKVGEALLDCAKQKM *	Monomer	2.9	40.00	8.99
U ₂ -PSDTX- Ta1a	5750.94	148,472	DWKNTAKEWGKKVGEALLDCAKQKM *	1 S-S Homodimer	5.8	40.00	9.23
U ₂ -PSDTX- Ta1b	5438.60	144,674	DWKGGAKDCAKKGAQCVLECVQQKM *	3 S-S Homodimer	5.6	44.00	8.83
U ₂ -PSDTX- Ta1c	5608.78	178,027	DWTDTAKEWGRKVGGALLDCAKQKM*	1 S-S Homodimer	3.8	40.00	8.70
U ₂ -PSDTX- Ta1c U ₂ -PSDTX- Ta1a	5680.86	178,027 148,472	DWTDTAKEWGRKVGGALLDCAKQKM* DWKNTAKEWGKKVGEALLDCAKQKM*	Heterodimer	4.8	40.00	9.04
U ₃ -PSDTX- Ta1a	4468.45	26,331	KKKRKWVTKAIKEVGKTIGEALVEEAVSAALS AATEGGEKEE	Monomer	1.0	38.10	8.27
U ₄ -PSDTX- Ta1a	3566.12	126,081	GILGVIARWIWKLIQILAPTAAVEVATRLGLPQ	Monomer	2.0	60.61	10.84
U ₅ -PSDTX- Ta1a	3615.97	91,424	FWGLILQGIWAVVKWAGPIIVDIAADYVIEYV*	Monomer	1.0	71.88	4.03

Table 2. Peptide sequences in the venom of *Tetraponera aethiops*. pI, isoelectric point. For each peptide, the transcripts frequency value (Reads Per Millions; RPMs) represents the frequency sum of all assembled contigs encoding the peptide precursor. *"*"* denotes C-terminal amidation.

Since several dimeric peptides have been found in ant venoms [32], particularly for the Pseudomyrmecinae [14,15,33], we hypothesized that these three transcripts encoded dimeric peptide subunits. Based on this hypothesis, we calculated the theoretical masses of these presumed homo/heterodimeric peptides. Indeed, the calculated masses (i.e., 5438.60; 5750.94; 5608.78; 5680.86 Da) were detected in the total ion chromatogram of the crude venom corresponding to the pseudomyrmecitoxins Ta-5438, Ta-5750, Ta-5608, Ta-5680, and eluting from 23.64 to 26.75 min (Table 1). In order to confirm the presence of these four dimeric peptides, the crude venom was reduced using dithiothreitol (DTT) and then alkylated with iodoacetamide (IA). Both reduced and reduced/alkylated venoms were submitted to LC-MS analysis on an LCQ-ion trap Advantage mass spectrometer following the same elution conditions as crude venom. The comparisons of both chromatograms and spectra before and after reduction/alkylation support our hypothesis of dimeric features. As these dimeric pseudomyrmecitoxins shared a high percentage identity (an average of 57%), we used the same subscript to denote the 'unknown' activity descriptor prefix (U_2) . The homodimeric U₂-PSDTX-Ta1b toxin (Ta-5438) is structured by three disulfide bonds, but further investigations are required to know whether cysteines form three interchain disulfide bonds or one interchain plus two intrachain disulfide bonds. Both homodimer U2-PSDTX-Ta1a (Ta-5750) and homodimer U₂-PSDTX-Ta1c (Ta-5608) are linked together by a single disulfide bond. The heterodimeric peptide Ta-5680 was formed of two very similar chains (i.e., U₂-PSDTX-Ta1a and U₂-PSDTX-Ta1c) linked together by one disulfide bond (Figure 5). It should also be noted that the monomer form of U₂-PSDTX-Ta1a was detected in the venom in a relatively small proportion (0.28% of the whole venom peptidome).

Figure 5. Identification of the dimeric features of the Ta-5680 peptides in *T. aethiops* venom. (**A**) Extracted-ion chromatogram and MS spectrum of the peptide Ta-5680 from the LC–MS analysis of *T. aethiops* venom before reduction/alkylation. We hypothesized that Ta-5680 is a heterodimeric peptide having the hypothetic sequence shown on the right. The distinctive residues between both monomers are highlighted in grey and the red bar represents the disulfide bond. (**B**) Comparison of chromatograms and spectra before and after reduction with DTT (Dithiothreitol) revealed the presence of two novel masses (2875.47 and 2805.39 Da) corresponding to both A and B chains while the Ta-5680 mass disappeared. (**C**) Alkylation experiment using IA (iodoacetamide) confirmed the presence of one cysteine on each alkylated monomer.

Overall, except for U₅-PSDTX-Ta1a, all the pseudomyrmecitoxins in the *T. aethiops* venom are polycationic and basic (pI ranging from 8.26 to 10.84) having a net charge ranging from 1 to 5.8. Both peptide U₄- and U₅-PSDTX-Ta1a possess a high proportion of hydrophobic residues (Table 2). Furthermore, several pseudomyrmecitoxins shared a high percentage identity with previously reported ant venom peptides. Thus, chains from both homo- and heterodimers (i.e., U₂-PSDTX-Ta1a-c) shared an average of 30% identity with the A-chain of M-MIITX-Mp2a from *Myrmecia pilosula*. In addition, two other pseudomyrmecitoxins (i.e., U₃-PSDTX-Ta1a and U₄-PSDTX-Ta1a) shared sequence identities with myrmeciitoxins previously found for *Myrmecia gulosa* [28], poneratoxins found for *Neoponera goeldii* [34], and myrmicitoxins found for *Tetramorium bicarinatum* [29] (Figure 6). The structural prediction performed on the PepFold3 server suggested that all pseudomyrmecitoxins adopt secondary structures dominated by α -helices [35].

Species	%ID	1	
Tetraponera aethiops	-	U3-PSDTX-Tala	KKKRKWVTKAIKEVGKTIGEALVEEAVSAALSAATEGGEKEE
Myrmecia gulosa	45	MIITX1-Mg7b	KRRRGLKKIIGKVIKGTGKVAGEAAASAVADAA <mark>VSAA</mark> I <mark>DA</mark> VVGTTEEPEQ
Species	%ID		
Tetraponera aethiops		U4-PSDTX-Tala	GILGVIARWIWKLIQILAPTAAVEVATRLCLPQ
Tetramorium bicarinatum	34	U10-MYRTX-Tb1a	<mark>GLGFLAKIMGK</mark> VGM <mark>RMIKKLVPEAA</mark> KVAVDQLSQQQ
Myrmecia gulosa	24	MIITX1-Mg1a	<mark>GLGRLIGKIAKK</mark> GAKIAAE <mark>AA</mark> ANAAAEK <mark>AA</mark> EAL
Neoponera goeldii	19	U1-PONTX-Ng3e	<mark>GL</mark> KDW <mark>VKI</mark> A <mark>G</mark> GWL <mark>KK</mark> KGPG <mark>I</mark> LK <mark>AA</mark> MA <mark>AA</mark> TQ
-			
Species	%ID	1	
Myrmecia pilosula		M-MIITX-Mp2a	I DWK KVDWKKVS <mark>KK</mark> TCKV <mark>ML</mark> KAC <mark>K</mark> FL-
Tetraponera aethiops	36	U2-PSDTX-Tala	- <mark>dw</mark> kn <mark>ta-kewgk</mark> kvgealldcakokm
Tetraponera aethiops	29	U2-PSDTX-Talb	- <mark>DW</mark> KGG <mark>A-KD</mark> CAKKGAQC <mark>VLEC</mark> VQQKM
Tetraponera aethiops	25	U2-PSDTX-Talc	- <mark>dw</mark> td <mark>ta-kewgrkvg</mark> g <mark>all</mark> dcakokm

Figure 6. Of *Tetraponera aethiops* mature venom peptides with similar venom peptides from ant venoms [28,29,34,36]. Alignments were generated with the Muscle program in Seaview version 4.6.1 and edited using BOXSHADE version 3.2. Conserved residues are highlighted in cyan, identical residues are highlighted in magenta and similar residues are highlighted in blue.

3. Discussion

Defensive venoms such as those of bees or fishes are arguably comprised of conserved toxins acting primarily to trigger pain and being less complex in composition than predatory venoms [1]. The venomic investigation conducted in this study revealed that the defensive venom peptidome of *T. aethiops* is streamlined, containing only twelve peptides, with one being very dominant accounting for 66.41% of the overall peptidome (Figure 1, Table 1). This venom peptide diversity is obviously lower than the highly complex predatory venoms of spiders [37], scorpions [38], centipedes [39], or cone snails [40]. The venom peptidome of *T. aethiops* is also substantially less complex than the predatory ant *Tetramorium bicarinatum* venom peptidome, which is encoded by 37 peptide genes belonging to three superfamilies [29]. However, this peptide diversity is similar to those of other ants with a dual use of offensive/defensive venom such as *Myrmecia gulosa* [28] and *Odontomachus monticola* [26]. Different venom compositions have also been noted in the subfamily Pseudomyrmecinae according to a mass spectrometry-based investigation. Indeed, the predatory ground-dwelling species *Pseudomyrmex termitarius* has a venom composed of 87 linear peptides, whereas the venoms of the arboreal *P. gracilis* and the plant-ant *P. penetrator* are composed of only 23 and 26 peptides, respectively, certain of them with disulfide bonds and dimeric features [15].

Here we also demonstrate the presence of a set of homo- and heterodimeric peptides in the T. aethiops venom which is consistent with previous examinations of pseudomyrmicine venoms from the Paleotropical genus Tetraponera [33] and the Neotropical genus Pseudomyrmex genera [14,15]. Interestingly, none of the dimeric pseudomyrmecitoxins characterized in T. aethiops venom show sequence identity with known heterodimeric pseudomyrmecitoxins found in Pseudomyrmex triplarinus venom (see [14]). Nevertheless, our data revealed sequence identity with a dimeric myrmeciitoxin from Myrmecia pilosula, M-MIITX-Mp2a: 36%, 29%, and 25% for U2-PSDTX-Ta1a, U2-PSDTX-Ta1b, and U_2 -PSDTX-Ta1c, respectively (Figure 6; See [27,41]). Altogether, these multiple dimeric peptides found in the genera Myrmecia, Pseudomyrmex and Tetraponera, suggest that dimeric scaffolds are recurrent in the phylogenetic clade Pseudomyrmecinae/Myrmeciinae, with these two subfamilies being close phylogenically [42]. Over a broader scale, dimeric venom peptides were found in the venom of several ant subfamilies (i.e., Pseudomyrmecinae, Ectatomminae, Myrmeciinae, and Ponerinae) [23,27,28,32,33,43] while this structural feature was only occasionally noted in the peptidome of other venomous animals [44–46]. Interestingly, these ant species possessing dimeric peptide toxins in their venom are also well-known for the intense pain induced by their sting. This observation raises the matter of the evolutionary advantage of such dimeric scaffolds for ant venoms that might be related to the defense of the colony and extended to the host myrmecophyte for plant-ants ([15], this study).

In terms of primary sequence, several of the pseudomyrmecitoxins described here have sequence identities with other ant venom dimeric peptides which are known for their pain-inducing properties. Actually, each chain of dimeric U_2 -PSDTXs has a sequence identity with the A-chain of the M-MIITX-Mp2a, the heterodimeric pilosulin discovered in Myrmecia pilosula venom (Figure 6). Indeed, Dekan et al. (2017) showed that M-MIITX-Mp2a, a membrane-disrupting peptide displaying broad-spectrum antimicrobial and nociceptive properties, also induces a concentration-dependent transient increase in the intracellular Ca^{2+} in neuronal cells eliciting spontaneous pain in mice [36]. Along the same line, U₄-PSDTX-Ta1a, the major linear peptide in T. aethiops venom has 45% sequence identity with the major linear peptide of *Myrmecia gulosa* venom, MIITX₁-Mg1a (Figure 6). Robinson et al. (2018) showed that this peptide possesses a membrane disrupting activity capable of causing a leak in membrane ion conductance, thus altering membrane potential and triggering neuronal depolarization. On the one hand, it activates mammalian sensory neurons, which is consistent with the capacity to produce pain. On the other hand, MIITX₁-Mg1a is also able to incapacitate arthropods, demonstrating its multifunctional role [28]. Presumably, these sequence identities with pain-inducing peptides might explain the extremely painful T. aethiops stings even though the functional characterization of pseudomyrmecitoxins is obviously required to remove any doubt.

The defensive function of the venom is likely one of the major factors that favored the rise of sociality in hymenopterans, driving the evolution of the venom toward the protection of the colony from predators [47]. The present investigation provides another piece to the evolutive puzzle of Hymenoptera venoms where polycationic, amphiphilic, α -helical peptides, which are sometimes dimeric, seems to play a major role for colony protection.

4. Conclusions

In this study, we investigated the venom peptidome of *Tetraponera aethiops* which is mainly used for defensive purposes. Our data revealed that the *T. aethiops* venom peptidome contains twelve venom peptides, among which nine were identified through the combination of transcriptomic and proteomic data. We hypothesized that the imposed selective pressures to deter predators have led toward the simplification of *T. aethiops* venom likely dominated by pain-inducing toxins. *Tetraponera aethiops* venom peptides, which are either linear or dimeric, possess substantial sequence identities with myrmeciitoxins previously described as both pain-inducing and insecticidal. Nevertheless, the functional characterization of *T. aethiops* venom pseudomyrmecitoxins is needed to come to a conclusion on their biological significance.

5. Materials and Methods

5.1. Collection of the Ants and Preparation of the Venom Samples

Tetraponera aethiops workers were collected in Cameroon, near Douala (N3°53.310′ E10°44.918′) in 2016 and 2018. The ants' venom sacs were dissected and placed together in water containing 1% formic acid (v/v) and the membranes disrupted using ultrasonic waves for 2 min. Then, the samples were centrifuged for 5 min at 14,400 rpm, the supernatant was collected and dried with a speed vacuum prior to storage at -20 °C until use. Four venom samples containing 14, 19, 20, and 29 venom sacs were used for all the proteomic analyses.

5.2. Mass Spectrometry Analysis

A preliminary LC–MS analysis of the crude venom was carried out on the LCQ-Ion trap Surveyor equipped with an ESI-LC system Advantage (ThermoFisher Scientific, Courtabœuf, France). Peptides were separated using an Acclaim RSLC C₁₈ column (2.2 μ m; 2.1 × 150 mm; Thermofisher, France). The mobile phase was a gradient prepared from 0.1% aqueous formic acid (solvent A) and 0.1% formic acid in acetonitrile (solvent B). The peptides were eluted using a linear gradient from 0 to 50% of solvent B during 45 min, then from 50 to 100% during 10 min, and finally held for 5 min at a 250 μ L min⁻¹ flow rate. The electrospray ionization mass spectrometry detection was performed in positive mode with the following optimized parameters: the capillary temperature was set at 300 °C, the spray voltage was 4.5 kV, and the sheath gas and auxiliary gas were set at 50 and 10 psi, respectively. The acquisition range was from 100 to 2000 *m*/*z*. The area value of each peak corresponding to a peptide was manually integrated using the peak ion extraction function in Xcalibur software (version 4.0, ThermoFisher Scientific, Courtabœuf, France). The relative peak area indicates the contribution of each peptide to all the peptides identified in the venom, providing a measure of relative abundance.

5.3. Disulfide Bond Reduction and Alkylation

The presence of dimeric peptides in *T. aethiops* venom was determined via chemical reduction/alkylation of crude venom and subsequent LC–MS analysis. Disulfide reduction was achieved by mixing 40 μ L of crude venom (six venom reservoirs) incubated with 40 μ L of 100 mM ammonium bicarbonate buffer (pH 8) containing 10 mM dithiothreitol (DTT) for 30 min at 56 °C. Then, 40 μ L of the reduced venom was analyzed through LC–MS to identify the dimeric peptides. Finally, the remaining 40 μ L of the reduced venom was alkylated by adding 1.5 μ L of 0.5 M iodoacetamide (IA) for 90 min at room temperature in the dark. As chemical reduction/alkylation results in a mass

increase of 57 Da for each cysteine, the examination of mass shifts in the mass spectra of both reduced and reduced/alkylated samples permitted us to determine the number of disulfide bonds in the corresponding peptides.

5.4. De novo Orbitrap Mass Spectrometry-Based Sequencing

Crude venom was re-suspended in water and then desalted using ZipTip® C₁₈ (Merck Millipore, Burlington, VT, USA) after adding trifluoroacetic acid at a final concentration of 0.5%. Then, the venom sample was subjected to de novo sequencing using a Q-Exactive Plus mass spectrometer coupled to a Nano-LC Proxeon 1000 (ThermoFisher Scientific, Waltham, MA, USA). Peptides were separated through chromatography with the following parameters: Acclaim PepMap100 C₁₈ pre-column (2 cm, 75 μm i.d., 3 μm, 100 Å), Pepmap-RSLC Proxeon C₁₈ column (50 cm, 75 μm i.d., 2 μm, 100 Å), 300 nL min⁻¹ flow rate, a 98 min gradient from 95% solvent A (water, 0.1% formic acid) to 35% solvent B (99.9% acetonitrile, 0.1% formic acid) for a total time of 2 h. Peptides were analyzed in the Orbitrap cell, at a resolution of 120,000, with a mass range of m/z 350–1550. Fragments were obtained through high collision-induced dissociation (HCD) activation with a collisional energy of 27%. Data were acquired in the Orbitrap cell in a Top20 mode, at a resolution of 17,500. For the identification step, all MS and MS/MS data were processed with an in-house Peaks software (BSI, version 6.0) to perform de novo sequencing. The mass tolerance was set to 10 ppm for precursor ions and 0.02 Da for fragments. The following modifications were allowed: oxidation (Met) and pyroglutamic acid (Glu). De novo peptide sequences with Average Local Confidence (ALC) higher than 60% were used for the peptide identifications.

5.5. Direct Sequencing of Venom Gland RNA

Venom glands and sacs from 20 live ant workers, anesthetized by cooling, were dissected in a PBS solution. Each tissue was immediately placed in 500 μ L of TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and total RNAs were extracted afterward using the RNeasy Micro Kit (Qiagen) according to manufacturer's instructions. Contaminating genomic DNA was removed using a DNA-free kit (Applied Biosystem) according to the manufacturer's instructions. RNA quantity was evaluated using a nanodrop and a bioanalyzer (Nanodrop 2000, ThermoFisher Scientific; Agilent 2100 Bioanalyzer System). RNAseq was performed at the GeT-PlaGe core facility, INRA Toulouse, France. RNA-seq libraries were prepared according to Illumina's protocols using the Illumina TruSeq Stranded mRNA sample prep kit to analyze mRNA. Briefly, mRNA was selected using poly-T beads. Then, the RNA was fragmented to generate double stranded cDNA and adaptors were ligated to be sequenced. Eleven cycles of PCR were applied to amplify the libraries. Library quality was assessed using a Fragment Analyser, and the libraries were performed on an Illumina HiSeq3000 using a paired-end read length of 2 × 150 pb with the Illumina HiSeq3000 sequencing kits.

5.6. Bioinformatic Tools

5.6.1. Contigs Quantification

The read pairs were assembled twice with drap (version 1.9.1) [48] using the de Bruijn graph assembler called oases (parameter: –dbg oases). The assembly metrics were produced with the assemblathon_stats.pl scripts. Raw reads were aligned on the contigs with bwa mem (version 0.7.12-r1039) [49] using the default parameters and the alignment files were sorted, compressed, and indexed with samtools view, sort, and index (version: 1.3.1) using the default parameters [50]. The quantification files were generated with samtools idxstats (version: 1.3.1), giving us the length of each contig in base pairs along with the number of hits, corresponding to the number of sequences from RNAseq reads which aligned on a given contig.

To calculate the expression rate of transcripts discovered in the venom gland transcriptome, the appellation Reads Per Million (RPM) was chosen over the traditionally used Transcripts count Per Million (TPM) value. Indeed, TPM calculation takes into account the length of the transcript, or in absence of reference genome, of the contig. However, for contigs containing the venom peptides open reading frames (ORF), the assembler often generates overextended contigs (see Table S1). Thus, the expression rate of the short venom peptides transcripts would be underestimated with TPM [51]. So we calculated the RPM value for each transcript of interest in two steps: (i) by dividing the number of aligned reads for each contig by the total number of million reads aligned for the sample, and (ii) by summing up the obtained values for each contig encoding the transcript when several contigs represent the same peptide.

5.6.2. Precursor Identification and Mature Sequences

RNAseq data were translated using a translate program command lines (emboss package, command line: transeq) in order to obtain the potential Open Reading Frames. Then, the fragments of sequences obtained during the de novo Orbitrap mass spectrometry-based sequencing were aligned against these data by using the command-line NCBI BLAST program (ncbi-blast-2.6.0+ package, command line: blastp, parameter: -matrix PAM30) with adapted parameters for short sequences, allowing us to find the complete peptide sequences and the name of the contigs on which they aligned.

The masses of mature peptide sequences, obtained from these different approaches, were systematically verified using the peptide mass program from ExPASy portal (https://expasy.org) and compared to those obtained through mass spectrometry. The isoelectric points, net charges and percentage of hydrophobic amino acids were calculated using ExPASy (https://web.expasy.org/compute_pi/), PepCalc (https://pepcalc.com/), and Peptide Property Calculator V3.1 (https://www.biosyn.com/peptidepropertycalculator/peptidepropertycalculator.aspx). Secondary structure predictions were conducted with the PEP-FOLD3 server [35]. Signal sequences and transmembrane domains were predicted with the phobius program available at http://phobius.sbc.su.se/. Sequence similarities were searched for using the NCBI BLAST program presented in the Uniprot server with the default parameters. Alignments were achieved and sequence identity percentages were calculated with the EMBL-EBI server and the MUSCLE program with the default parameters [52]. They were then edited using Seaview version 4.6.1 [53] and BOXSHADE version 3.2 (https://embnet.vital-it.ch/software/BOX_form.html).

5.6.3. Annotation of Most Expressed Contigs

Open reading frames (≥100 amino-acids length), found by translating RNAseq data, were extracted from the most abundant contigs and then submitted to the NCBI BLAST program against the Uniprot refseq protein database on the computational cluster of the Genotoul bioinformatic facility, INRA Toulouse, France (ncbi-blast-2.6.0 + package, command line: blastp, parameter: -matrix BLOSUM62).

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/11/12/732/s1, Table S1: Addressing table of major contigs expressed by *Tetraponera aethiops* venom glands.

Author Contributions: A.T. and M.T. (Michel Treilhou) conceptualized this project. A.T., N.T., M.T. (Maurice Tindo), and M.K. collected the ants. V.B., A.T., N.T., C.K., and E.B. performed the experiments and data analysis. V.B. and A.T. wrote the original draft. All authors contributed to writing and theorical discussions.

Funding: This research received no external funding.

Acknowledgments: We are grateful for Andrea Yockey for proofreading the manuscript. V.B. was the recipient of a PhD fellowship from the French Ministry of Scientific Research. This study was performed in collaboration with the GeT core facility, Toulouse, France (http://get.genotoul.fr), and was aided by the France Génomique National institutional infrastructure, funded as part of the "Investissement d'avenir" program managed by the Agence Nationale pour la Recherche (contract ANR-10-INBS-09). Ant samples were collected under the authorization of the Cameroon Ministry of Scientific Research and Innovation.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Casewell, N.R.; Wüster, W.; Vonk, F.J.; Harrison, R.A.; Fry, B.G. Complex cocktails: The evolutionary novelty of venoms. *Trends Ecol. Evol.* **2013**, *28*, 219–229. [CrossRef]
- 2. Daly, N.L.; Wilson, D. Structural diversity of arthropod venom toxins. *Toxicon* 2018, 152, 46–56. [CrossRef]
- Walker, A.A.; Robinson, S.D.; Yeates, D.K.; Jin, J.; Baumann, K.; Dobson, J.; Fry, B.G.; King, G.F. Entomo-venomics: The evolution, biology and biochemistry of insect venoms. *Toxicon* 2018, 154, 15–27. [CrossRef]
- 4. Blank, S.; Seismann, H.; Bockisch, B.; Braren, I.; Cifuentes, L.; McIntyre, M.; Ruhl, D.; Ring, J.; Bredehorst, R.; Ollert, M.W.; et al. Identification, recombinant expression, and characterization of the 100 kDa high molecular weight hymenoptera venom allergens Api m 5 and Ves v 3. *J. Immunol.* **2010**, *184*, 5403–5413. [CrossRef]
- 5. Hoffman, D.R. Ant venoms. *Curr. Opin. Allergy Clin. Immunol.* **2010**, *10*, 342–346. [CrossRef]
- Wanandy, T.; Wilson, R.; Gell, D.; Rose, H.E.; Gueven, N.; Davies, N.W.; Brown, S.G.A.; Wiese, M.D. Towards complete identification of allergens in Jack Jumper (*Myrmecia pilosula*) ant venom and their clinical relevance: An immunoproteomic approach. *Clin. Exp. Allergy* 2018, 48, 1222–1234. [CrossRef]
- Nelder, M.P.; Paysen, E.S.; Zungoli, P.A.; Benson, E.P. Emergence of the introduced ant *Pachycondyla chinensis* (Formicidae: Ponerinae) as a public health threat in the southeastern United States. *J. Med. Entomol.* 2006, 43, 1094–1098. [CrossRef]
- 8. Srisong, H.; Sukprasert, S.; Klaynongsruang, S.; Daduang, J.; Daduang, S. Identification, expression and characterization of the recombinant Sol g 4.1 protein from the venom of the tropical fire ant *Solenopsis geminata*. *J. Venom. Anim. Toxins Incl. Trop. Dis.* **2018**, *24*, 23. [CrossRef]
- 9. Wanandy, T.; Honda-Okubo, Y.; Davies, N.W.; Rose, H.E.; Heddle, R.J.; Brown, S.G.A.; Woodman, R.; Petrovsky, N.; Wiese, M.D. Pharmaceutical and preclinical evaluation of Advax adjuvant as a dose-sparing strategy for ant venom immunotherapy. *J. Pharm. Biomed. Anal.* **2019**, *172*, 1–8. [CrossRef]
- Cologna, C.T.; dos S. Cardoso, J.; Jourdan, E.; Degueldre, M.; Upert, G.; Gilles, N.; Uetanabaro, A.P.T.; Costa Neto, E.M.; Thonart, P.; de Pauw, E.; et al. Peptidomic comparison and characterization of the major components of the venom of the giant ant *Dinoponera quadriceps* collected in four different areas of Brazil. *J. Proteomics* 2013, 94, 413–422. [CrossRef]
- Cologna, C.T.; Rodrigues, R.S.; Santos, J.; de Pauw, E.; Arantes, E.C.; Quinton, L. Peptidomic investigation of *Neoponera villosa* venom by high-resolution mass spectrometry: Seasonal and nesting habitat variations. *J. Venom. Anim. Toxins Incl. Trop. Dis.* 2018, 24, 6. [CrossRef]
- Fox, E.G.P.; Russ Solis, D.; Delazari dos Santos, L.; Aparecido dos Santos Pinto, J.R.; Ribeiro da Silva Menegasso, A.; Cardoso Maciel Costa Silva, R.; Sergio Palma, M.; Correa Bueno, O.; de Alcântara Machado, E. A simple, rapid method for the extraction of whole fire ant venom (Insecta: Formicidae: Solenopsis). *Toxicon* 2013, 65, 5–8.
- 13. Aili, S.R.; Touchard, A.; Petitclerc, F.; Dejean, A.; Orivel, J.; Padula, M.P.; Escoubas, P.; Nicholson, G.M. Combined peptidomic and proteomic analysis of electrically stimulated and manually dissected venom from the south american bullet ant *Paraponera clavata*. *J. Proteome Res.* **2017**, *16*, 1339–1351. [CrossRef]
- 14. Pan, J.; Hink, W.F. Isolation and characterization of myrmexins, six isoforms of venom proteins with anti-inflammatory activity from the tropical ant, *Pseudomyrmex triplarinus*. *Toxicon* **2000**, *38*, 1403–1413. [CrossRef]
- 15. Touchard, A.; Labrière, N.; Roux, O.; Petitclerc, F.; Orivel, J.; Escoubas, P.; Koh, J.M.S.; Nicholson, G.M.; Dejean, A. Venom toxicity and composition in three *Pseudomyrmex* ant species having different nesting modes. *Toxicon* **2014**, *88*, 67–76. [CrossRef]
- 16. Rico-Gray, V.; Oliveira, P.S. *The Ecology and Evolution of Ant-Plant Interactions*; University of Chicago Press: Chicago, IL, USA, 2007.
- 17. Yumoto, T.; Maruhashi, T. Pruning behavior and intercolony competition of *Tetraponera (Pachysima) aethiops* (Pseudomyrmecinae, Hymenoptera) in *Barteria fistulosa* in a tropical forest, Democratic Republic of Congo. *Ecol. Res.* **1999**, *14*, 393–404. [CrossRef]
- Blatrix, R.; Djiéto-Lordon, C.; Mondolot, L.; la Fisca, P.; Voglmayr, H.; Mckey, D. Plant-ants use symbiotic fungi as a food source: New insight into the nutritional ecology of ant-plant interactions. *Proc. R. Soc. B Biol. Sci.* 2012, 279, 3940–3947. [CrossRef]

- 19. Lee, D.W. Nature's Fabric: Leaves in Science and Culture; The University of Chicago Press: Chicago, IL, USA, 2017.
- Dejean, A.; Djiéto-Lordon, C.; Orivel, J. The plant ant *Tetraponera aethiops* (Pseudomyrmecinae) protects its host myrmecophyte *Barteria fistulosa* (Passifloraceae) through aggressiveness and predation. *Biol. J. Linn. Soc.* 2008, 93, 63–69. [CrossRef]
- 21. Johnson, S.R.; Copello, J.A.; Evans, M.S.; Suarez, A.V. A biochemical characterization of the major peptides from the venom of the giant neotropical hunting ant *Dinoponera australis*. *Toxicon* **2010**, *55*, 702–710. [CrossRef]
- 22. King, G.F.; Gentz, M.C.; Escoubas, P.; Nicholson, G.M. A rational nomenclature for naming peptide toxins from spiders and other venomous animals. *Toxicon* **2008**, *52*, 264–276. [CrossRef]
- 23. Touchard, A.; Aili, S.R.; Fox, E.G.P.; Escoubas, P.; Orivel, J.; Nicholson, G.M.; Dejean, A. The biochemical toxin arsenal from ant venoms. *Toxins* **2016**, *8*, 30. [CrossRef]
- Deutsch, E.W.; Csordas, A.; Sun, Z.; Jarnuczak, A.; Perez-Riverol, Y.; Ternent, T.; Campbell, D.S.; Bernal-Llinares, M.; Okuda, S.; Kawano, S.; et al. The ProteomeXchange consortium in 2017: Supporting the cultural change in proteomics public data deposition. *Nucleic Acids Res.* 2017, 45, 1100–1106. [CrossRef] [PubMed]
- Perez-Riverol, Y.; Csordas, A.; Bai, J.; Bernal-Llinares, M.; Hewapathirana, S.; Kundu, D.J.; Inuganti, A.; Griss, J.; Mayer, G.; Eisenacher, M.; et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. *Nucleic Acids Res.* 2019, 47, D442–D450. [CrossRef] [PubMed]
- Kazuma, K.; Masuko, K.; Konno, K.; Inagaki, H. Combined venom gland transcriptomic and venom peptidomic analysis of the predatory ant *Odontomachus monticola*. *Toxins* 2017, *9*, 323. [CrossRef] [PubMed]
- Davies, N.W.; Wiese, M.D.; Brown, S.G.A. Characterisation of major peptides in "jack jumper" ant venom by mass spectrometry. *Toxicon* 2004, 43, 173–183. [CrossRef]
- 28. Robinson, S.D.; Mueller, A.; Clayton, D.; Starobova, H.; Hamilton, B.R.; Payne, R.J.; Vetter, I.; King, G.F.; Undheim, E.A.B. A comprehensive portrait of the venom of the giant red bull ant, *Myrmecia gulosa*, reveals a hyperdiverse hymenopteran toxin gene family. *Sci. Adv.* **2018**, *4*, eaau4640. [CrossRef] [PubMed]
- 29. Touchard, A.; Téné, N.; Chan Tchi Song, P.; Lefranc, B.; Leprince, J.; Treilhou, M.; Bonnafé, E. Deciphering the molecular diversity of an ant venom peptidome through a venomics approach. *J. Proteome Res.* **2018**, *17*, 3503–3516. [CrossRef]
- 30. Kreil, G.; Haiml, L.; Suchanek, G. Stepwise cleavage of the pro part of promelittin by dipeptidylpeptidase IV. *Eur. J. Biochem.* **1980**, 111, 49–58. [CrossRef] [PubMed]
- 31. Hurst, D.; Rylett, C.M.; Isaac, R.E.; Shirras, A.D. The drosophila angiotensin-converting enzyme homologue Ance is required for spermiogenesis. *Dev. Biol.* **2003**, *254*, 238–247. [CrossRef]
- 32. Aili, S.R.; Touchard, A.; Escoubas, P.; Padula, M.P.; Orivel, J.; Dejean, A.; Nicholson, G.M. Diversity of peptide toxins from stinging ant venoms. *Toxicon* **2014**, *92*, 166–178. [CrossRef]
- Touchard, A.; Koh, J.M.S.; Aili, S.R.; Dejean, A.; Nicholson, G.M.; Orivel, J.; Escoubas, P. The complexity and structural diversity of ant venom peptidomes is revealed by mass spectrometry profiling. *Rapid Commun. Mass Spectrom.* 2015, 29, 385–396. [CrossRef] [PubMed]
- Orivel, J.; Redeker, V.; Le Caer, J.P.; Krier, F.; Revol-Junelles, A.M.; Longeon, A.; Chaffotte, A.; Dejean, A.; Rossier, J. Ponericins, new antibacterial and insecticidal peptides from the venom of the ant *Pachycondyla goeldii*. J. Biol. Chem. 2001, 276, 17823–17829. [CrossRef] [PubMed]
- Lamiable, A.; Thévenet, P.; Rey, J.; Vavrusa, M.; Derreumaux, P.; Tufféry, P. PEP-FOLD3: Faster de novo structure prediction for linear peptides in solution and in complex. *Nucleic Acids Res.* 2016, 44, W449–W454. [CrossRef]
- 36. Dekan, Z.; Headey, S.J.; Scanlon, M.; Baldo, B.A.; Lee, T.H.; Aguilar, M.I.; Deuis, J.R.; Vetter, I.; Elliott, A.G.; Amado, M.; et al. Δ-Myrtoxin-Mp1a is a helical heterodimer from the venom of the jack jumper ant that has antimicrobial, membrane-disrupting, and nociceptive activities. *Angew. Chem. Int. Ed.* 2017, *56*, 8495–8499. [CrossRef]
- 37. Smith, J.J.; Herzig, V.; King, G.F.; Alewood, P.F. The insecticidal potential of venom peptides. *Cell. Mol. Life Sci.* 2013, *70*, 3665–3693. [CrossRef] [PubMed]
- Ma, Y.; He, Y.; Zhao, R.; Wu, Y.; Li, W.; Cao, Z. Extreme diversity of scorpion venom peptides and proteins revealed by transcriptomic analysis: Implication for proteome evolution of scorpion venom arsenal. *J. Proteomics* 2012, 75, 1563–1576. [CrossRef]

- 39. Undheim, E.A.B.; Fry, B.G.; King, G.F. Centipede venom: Recent discoveries and current state of knowledge. *Toxins* **2015**, *7*, 679–704. [CrossRef] [PubMed]
- 40. Olivera, B.M.; Ramilo, C.A.; Abogadie, F.C.; Cruz, L.J.; Woodward, S.R.; Hillyard, D.R.; Rivier, J.; Clark, C.; Corpuz, G.P.; Mena, E.E. Diversity of conus neuropeptides. *Science* **1990**, *249*, 257–263. [CrossRef]
- 41. Wanandy, T.; Gueven, N.; Davies, N.W.; Brown, S.G.A.; Wiese, M.D. Pilosulins: A review of the structure and mode of action of venom peptides from an Australian ant *Myrmecia pilosula*. *Toxicon* **2015**, *98*, 54–61. [CrossRef] [PubMed]
- 42. Borowiec, M.L.; Rabeling, C.; Brady, S.G.; Fisher, B.L.; Schultz, T.R.; Ward, P.S. Compositional heterogeneity and outgroup choice influence the internal phylogeny of the ants. *Mol. Phylogenet. Evol.* **2019**, *134*, 111–121. [CrossRef] [PubMed]
- 43. Tani, N.; Kazuma, K.; Ohtsuka, Y.; Shigeri, Y.; Masuko, K.; Konno, K.; Inagaki, H. Mass spectrometry analysis and biological characterization of the predatory ant *Odontomachus monticola* venom and venom sac components. *Toxins* **2019**, *11*, 50. [CrossRef] [PubMed]
- Loughnan, M.; Nicke, A.; Jones, A.; Schroeder, C.I.; Nevin, S.T.; Adams, D.J.; Alewood, P.F.; Lewis, R.J. Identification of a novel class of nicotinic receptor antagonists. *J. Biol. Chem.* 2006, 281, 24745–24755. [CrossRef] [PubMed]
- 45. Santos, A.D.; Imperial, J.S.; Chaudhary, T.; Beavis, R.C.; Chait, B.T.; Hunsperger, J.P.; Olivera, B.M.; Adams, M.E.; Hillyard, D.R. Heterodimeric structure of the spider toxin *ω*-agatoxin IA revealed by precursor analysis and mass spectrometry. *J. Biol. Chem.* **1992**, *267*, 20701–20705. [PubMed]
- 46. Zamudio, F.Z.; Arévalo, C.; Conde, R.; Arévalos, C.; Becerril, B.; Martin, B.M.; Valdivia, H.H.; Possani, L.D. The mechanism of inhibition of ryanodine receptor channels by imperatoxin I, a heterodimeric protein from the scorpion *Pandinus imperator*. *J. Biol. Chem.* **1997**, *272*, 11886–11894. [CrossRef] [PubMed]
- 47. Schmidt, J.O. Evolutionary responses of solitary and social Hymenoptera to predation by primates and overwhelmingly powerful vertebrate predators. *J. Hum. Evol.* **2014**, *71*, 12–19. [CrossRef] [PubMed]
- 48. Cabau, C.; Escudié, F.; Djari, A.; Guiguen, Y.; Bobe, J.; Klopp, C. Compacting and correcting Trinity and Oases RNA-Seq de novo assemblies. *PeerJ* **2017**, *5*, e2988. [CrossRef]
- 49. Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. *Bioinformatics* **2010**, *26*, 589–595. [CrossRef]
- 50. Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The sequence alignment/map format and SAMtools. *Bioinformatics* **2009**, *25*, 2078–2079. [CrossRef]
- 51. Hsieh, P.H.; Oyang, Y.J.; Chen, C.Y. Effect of de novo transcriptome assembly on transcript quantification. *Sci. Rep.* **2019**, *9*, 8304. [CrossRef]
- 52. Chojnacki, S.; Cowley, A.; Lee, J.; Foix, A.; Lopez, R. Programmatic access to bioinformatics tools from EMBL-EBI update: 2017. *Nucleic Acids Res.* **2017**, *45*, W550–W553. [CrossRef]
- 53. Gouy, M.; Guindon, S.; Gascuel, O. SeaView Version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. *Mol. Biol. Evol.* **2010**, *27*, 221–224. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Venom Peptide Repertoire of the European Myrmicine Ant *Manica rubida*: Identification of Insecticidal Toxins

Axel Touchard,* Samira R. Aili, Nathan Téné, Valentine Barassé, Christophe Klopp, Alain Dejean, R. Manjunatha Kini, Mrinalini, Laurent Coquet, Thierry Jouenne, Benjamin Lefranc, Jérôme Leprince, Pierre Escoubas, Graham M. Nicholson, Michel Treilhou,[#] and Elsa Bonnafé[#]

approach, we characterized the venom peptidome of the European red ant, *Manica rubida*. We identified 13 "myrmicitoxins" that share sequence similarities with previously identified ant venom peptides, one of them being identified as an EGF-like toxin likely resulting from a threonine residue modified by *O*-fucosylation. Furthermore, we conducted insecticidal assays of reversed-phase HPLC venom fractions on the blowfly *Lucilia caesar*, permitting us to identify six myrmicitoxins (i.e., U_{3^-} , U_{10^-} , U_{20} -MYRTX-Mri1a, U_{10} -MYRTX-Mri1b, and U_{10^-} MYRTX-Mri1c) with an insecticidal activity. Chemically synthesized

 U_{10} -MYRTX-Mri1a, -Mri1b, -Mri1c, and U_{20} -MYRTX-Mri1a irreversibly paralyzed blowflies at the highest doses tested (30–125 nmol·g⁻¹). U_{13} -MYRTX-Mri1a, the most potent neurotoxic peptide at 1 h, had reversible effects after 24 h (150 nmol·g⁻¹). Finally, U_3 -MYRTX-Mri1a has no insecticidal activity, even at up to 55 nmol·g⁻¹. Thus, *M. rubida* employs a paralytic venom rich in linear insecticidal peptides, which likely act by disrupting cell membranes.

KEYWORDS: glycosylated toxin, peptidome, polycationic α -helix, predation, reversible neurotoxicity, pyroglutamate

INTRODUCTION

The ecological success of ants in terrestrial ecosystems is partially due to their propensity to evolve and use a broad array of bioactive molecules to communicate, defend their colony, and capture their prey.^{1,2} Although ant venoms exhibit an extraordinary diversity of toxins ranging from low molecular mass compounds to large proteins, small linear peptides predominate.^{3,4} Most of the investigated linear ant venom peptides are membrane-active antimicrobial peptides (AMPs),^{5–9} even though some were also reported as insecticidal toxins.¹⁰ Insecticidal assays have been conducted only on peptides isolated from a few ant venoms, such as paraponeritoxin (formerly poneratoxin) and poneritoxins isolated from the venom of *Paraponera clavata* (Paraponerinae) and *Anochetus emarginatus* (Ponerinae).^{11,12}

The limited number of investigations conducted on ant venoms is mainly due to the low venom yield per individual, rendering sampling difficult. Yet, integrative "-omics" approaches have recently permitted researchers to overcome these hurdles by using a combination of venom gland transcriptomics and proteomics. Jointly termed "venomics", such strategies permitted the comprehensive overview of the venom composition for four ant species.^{13–16} In the ant subfamily Myrmicinae, the most speciose with more than 6000 species described, the venom composition is extremely variable with alkaloids predominant in some tribes.^{17,18} Nevertheless,

recent proteomics analyses have revealed that the venoms of four myrmicine genera (i.e., *Tetramorium, Pogonomyrmex, Myrmica,* and *Manica*) are peptide-rich.^{19–22} Further investigation into the venom composition of other myrmicine species is therefore necessary to understand the intrinsic chemical properties of these venoms and gather information on the relationships between ant phylogeny and venom composition.

The myrmicine ant *Manica rubida*, the focal species of this study, is the largest stinging species in Western Europe known for its aggressive behavior associated with a painful sting. Furthermore, it is a generalist predator of small arthropods and its venom is very effective in paralyzing invertebrate prey.^{23,24} Previous mass spectrometry-based studies on *M. rubida* venom revealed the presence of ca. 200 molecular masses corresponding to peptides, some of them structured by one or three disulfide bonds;⁴ only one linear peptide has been sequenced so far.²⁰

Received: January 31, 2020 Published: March 17, 2020

Downloaded via Touchard Axel on March 25, 2020 at 12:54:56 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

In this study, we aimed to identify the peptides secreted by the venom gland of *M. rubida* and to investigate their insecticidal activity. Combining transcriptomic and proteomic methods, we identified 13 venom peptide precursors expressed in the venom glands and their encoding mature peptides. Most of the venom peptides described herein share sequence identities with peptides characterized in the venoms of *Tetramorium bicarinatum* (another Myrmicinae) and *Myrmecia gulosa* (a Myrmeciinae from Australia). Finally, we identified five novel insecticidal venom peptides which paralyze blowflies.

EXPERIMENTAL SECTION

Sample Collection

Live M. rubida workers were collected from Saint-Martin-Vésubie, Alpes Maritimes, France (N 44° 05' 20", E 7° 18' 47"). Colonies were maintained at 25 °C and fed three times a week with fresh mealworms and an aqueous honey solution (1:1 v/v). The ant venom sacs were dissected and pooled in water with 10% (v/v) acetonitrile (ACN) and the membranes were disrupted ultrasonically for 2 min. Then, samples were centrifuged for 5 min at 14 400 rpm, and the supernatant was collected and dried in a centrifuge evaporator prior to storage at -20 °C until use. Multiple venom samples of 100 venom sacs each were prepared to conduct the proteomic analyses. Independently, 200 ants were dissected for transcriptomic analyses. Their venom sacs plus venom glands were pooled and homogenized in 200 µL TRIzol reagent (Ambion, Life Technologies, France) prior to storage at -80 °C until further use.

Mass Spectrometry

A preliminary LC-MS analysis of the crude venom was carried out on an LCQ-Ion trap Surveyor equipped with an ESI-LC system Advantage (Thermo Fisher Scientific, MA, USA) as for the venom of *Tetramorium bicarinatum* (for more detail see Touchard et al.).¹⁵ Briefly the peptides were eluted using a linear gradient of ACN on a C₁₈ column (Luna 5 μ m; 2 × 150 mm; Phenomenex, CA, USA) at a flow rate of 250 μ L·min⁻¹. Then, the electrospray ionization mass spectrometry (ESI-MS) detection was performed in positive mode and the relative abundance of each peptide in the venom was determined using the peak ion extraction function in the Xcalibur software version 4.0 (Thermo Fisher Scientific, MA, USA).

Peptide Purification and Edman Degradation-Based Sequencing

Peptides from M. rubida venom were isolated as previously reported for the poneritoxins isolated from the A. emarginatus venom (see detail in Touchard et al.).¹² Five isolated peptides were selected for Edman degradation. Two peptides (i.e., U₆-MYRTX-Mri1a and U17-MYRTX-Mri1b) were subjected to Edman degradation on a gas-phase sequencer model ABI 492 (Applied Biosystems, CA, USA). The phenylthiohydantoin (PTH) amino acid standard kit was used and reconstituted according to the manufacturer's instructions. The procedures and reagents were used as recommended by the manufacturer. The PTH amino acid derivatives generated at each sequence cycle were identified and quantified online with an Applied Biosystems Model 140C HPLC system using the Applied Biosystems Model 610A data analysis system for protein sequencing. The three other isolated peptides (i.e., U_{12} -MYRTX-Mri1a, U₁₈-MYRTX-Mri1a, and U₂₀-MYRTX-Mri1a) were loaded onto a precycled Biobrene Plus-coated glass filter.

The N-terminal sequences were then determined by introducing the filter disc into a Procise P494 automated protein sequencer (Applied Biosystems, CA, USA) and runs of Edman degradation were carried out.

De Novo Mass Spectrometry-Based Sequencing

Crude venom was resuspended in water and then desalted using a ZipTip C₁₈ (Merck Millipore, VT, USA) after adding TFA at a final concentration of 0.5% v/v. Then, the venom sample was subjected to *de novo* sequencing using a Q-Exactive Plus mass spectrometer coupled to a Proxeon 1000 Nano-LC (Thermo Fisher Scientific, MA, USA). Peptides were separated with the following parameters: Acclaim PepMap100 C_{18} precolumn (2 cm, 75 µm i.d., 3 µm, 100 Å), Pepmap-RSLC Proxeon C_{18} column (50 cm, 75 μ m i.d., 2 μ m, 100 Å), 300 nL·min⁻¹ flow rate, a 98 min gradient from 95% solvent A (water, 0.1% formic acid) to 35% solvent B (ACN, 0.1% formic acid) for a total time of 2 h. Peptides were analyzed in the Orbitrap cell, at a resolution of 120 000, with a mass range of 350-1550 m/z. Fragments were obtained by high collisioninduced dissociation (HCD) activation with a collisional energy of 27%. MS/MS data were acquired in the Orbitrap cell in a Top20 mode at a resolution of 17 500. For the identification step, all MS and MS/MS data were processed with Peaks software (BSI, version 6.0) to perform de novo sequencing. The mass tolerance was set to 10 ppm for precursor ions and 0.02 Da for fragments. The following modifications were allowed: oxidation (Met) and pyroglutamic acid (Glu). De novo peptide sequences with average local confidence (ALC) levels higher than 60% were used for peptide identification. Sequence tags from MS/MS were searched against the de novo transcriptome database of M. rubida (see next section). Then, the final validation of the peptide sequences was achieved by matching the masses measured by mass spectrometry with those predicted from transcriptomic and MS/MS sequencing data with a mass tolerance of 0.05 Da.

Venom Gland Transcriptomics

Total RNA was extracted following the TRIzol manufacturer's instructions (Thermo Fisher Scientific, MA, USA). Total RNA was cleaned using an RNeasy Micro Kit (Qiagen, The Netherlands) following the instructions of the RNeasy Micro Handbook (12/2007, p 56) with on-column DNase I treatment and then stored at -80 °C. RNA purity and quantity was verified using the NanoDrop 2000 (Thermo Fisher Scientific, MA, USA). Total RNA was dried with RNAstable reagent (Biomatrica, CA, USA) and shipped to the Department of Biological Sciences, National University of Singapore for transcriptomic analysis. The dried sample was resuspended in 41 μ L water and RNA quality and quantity were further assessed using an Agilent 2100 Bioanalyzer. Using ~850 ng of total RNA, bead-based Poly-A tail selection was performed to purify the mRNA. Then, a cDNA library was constructed using the NEBNext Ultra Directional Library Prep Kit according to the manufacturer's protocol. Fragment size distribution of the library was verified using the Agilent 2100 Bioanalyzer. 250 bp Paired End sequencing was performed on an Illumina HiSeq 2500 platform on 1/14th of a lane. The read pairs were assembled with Drap (version 1.9.1)²⁵ with two de Bruijn graph assemblers: Oases_0.2.8 (default parameter) and Trinity-v2.3.2 (parameter: -dbg trinity). Drap 1.91 includes three read pre-processing steps before assembly with the following parameters: (1) read trimming and filtering (version

TrimGalore-0.4.5) trim galore-length 25-quality 10-stringency 3; (2) read filtering (version fastq illumina filter-0.1) filter illumina -q 10 - t 33 - e - m 25; (3) read normalization (version trinityrnaseq-Trinity-v2.3.2) insilico read normalization.pl-max cov 50-pairs together. The assembly metrics were produced with the assemblathon stats.pl scripts. Raw reads were aligned on the contigs with bwa mem (version $(0.7.12-r1039)^{2\delta}$ using default parameters, and the alignment files were sorted, compressed, and indexed with SAMtools (version: 1.3.1) using default parameters.²⁷ The quantification files were generated with SAMtools idxstats (version: 1.3.1) giving us the length of each contig in base pairs along with the number of hits, corresponding to the number of sequences from RNaseq reads which aligned on a given contig. To calculate the expression rate of each contig, we calculated the transcripts per million value (TPM) by dividing the number of aligned reads for each contig by the contig length, then dividing this value by the ratio of counts to contig length for all contig. This value is then multiplied by 1 million to generate TPM. The two transcript databases (Oases and Trinity) were translated in all six frames using the tranSEQ program (emboss package 6.6.0.0) and converted to BLAST databases using makeblastdb. The de novo predictive peptide sequences were submitted to command-line BLAST 2.6.0+ program with adapted parameters for short sequences (-M PAM30) in order to determine the exact mature peptide and precursor sequences. Precursors and mature sequences were aligned using the Muscle program in SeaView 1:4.6.4-1 and edited with BoxShade v3.31 C (beta, 970507). Signal sequence and transmembrane domain were predicted with the Phobius program available at http://phobius.sbc.su.se/.

Fmoc Solid Phase Peptide Synthesis

All Fmoc amino acid residues, O-benzotriazol-1-yl-N,N,N',N'tetramethyluronium hexafluorophosphate (HBTU) and Rink amide 4-methylbenzhydrylamine (MBHA) resin were purchased from Christof Senn Laboratories (Dielsdorf, Switzerland) or IRIS Biotech (Marktredwitz, Germany). Preloaded 4hydroxymethyl-phenoxymethyl-copolystyrene-1%-divinylbenzene resins (HMP) were obtained from Life Technologies (CA, USA). N,N-Diisopropylethylamine (DIEA), piperidine, TFA, triisopropylsilane (TIS), tert-butylmethyl ether (TBME) were supplied by Sigma-Aldrich (MO, USA). N-methylpyrrolidone (NMP), dimethylformamide (DMF), dichloromethane (DCM), and acetonitrile were obtained from Fisher Scientific (MA, USA). Peptides were synthesized by Fmoc solid phase methodology on a Liberty microwave assisted automated peptide synthesizer (CEM, NC, USA) using the standard manufacturer's procedures at 0.1 mmol scale. All Fmoc-amino acids (0.5 mmol, 5 equiv) were coupled (25 W, 75 °C, 300 s) except for histidine (0 W, 50 °C, 120 s and 25 W, 50 °C, 240 s) on either HMP or Rink amide resin, by in situ activation with HBTU (0.5 mmol, 5 equiv) and DIEA (1 mmol, 10 equiv) before Fmoc removal with a 20% piperidine in DMF (35 W, 75 °C, 30 s and 35 W, 75 °C, 180 s). After completion of the chain assembly, peptides were deprotected and cleaved from the resin by adding 10 mL of the mixture TFA/TIS/H₂O (9.5:0.25:0.25) for 120 min at room temperature. After filtration, crude peptides were washed three times by precipitation in TBME followed by centrifugation (4500 rpm, 15 min). The synthetic peptides were purified by RP-HPLC on a 21.2 × 250 mm Kinetex XB-C₁₈ (5 μ m, 100 Å) or Jupiter C₁₈ (5 μ m, 300 Å) column (Phenomenex, CA, USA)

using a linear gradient (10–70%, 10–80%, 20–70% or 30– 70% over 45 min) of ACN/0.1%TFA (99.9:0.1) at a flow rate of 10 mL/min. The purified peptides were then characterized through MALDI-TOF mass spectrometry on an UltrafleXtreme (Bruker, MA, USA) in reflector mode using α cyano-4-hydroxycinnamic acid as a matrix. Analytical RP-HPLC, performed on a 4.6 × 250 mm Kinetex XB-C₁₈ (5 μ m, 100 Å) or Jupiter C₁₈ (5 μ m, 300 Å) column, indicated that the purity of all the peptides was >99.9%.

Venom Fractionation and Insecticidal Assays

The fractionation of crude venom was performed using a Finnigan Spectra SYSTEM HPLC (pump PC4000 and AS3000) equipped with a DAD-UV 6000LP detector and a C_{18} column (Luna 5 μ m; 2 × 150 mm; Phenomenex, CA, USA), controlled by ChromQuest 5.0 software (Thermo Fisher Scientific, MA, USA). RP-HPLC was performed at a flow rate of 1 mL·min⁻¹ with the same solvent system as ESI-LC system Advantage (see Mass Spectrometry of the Experimental Section). The fractions were collected each minute and vacuum-dried prior to MS and insecticidal assays. Insecticidal assays were conducted on Lucilia caesar blowflies, a model insect often used for the insecticidal screening of venom peptides,²⁸ and thus allowing comparison with other venom toxins activity and potency. Each \hat{C}_{18} RP-HPLC fraction was dissolved in 16 μ L phosphate buffered saline (PBS) solution and manually injected into the lateral thoracic region of the blowflies using a 10 μ L Hamilton syringe (Hamilton Company, NV, USA). A volume of 2 μ L was injected per blowfly. Three flies were injected for each fraction and negative controls (PBS). Paralytic activity and lethality were determined after 5 min, 1 and 24 h. Flies that showed no sign of paralysis (no sign of movement dysfunction) were categorized as unaffected; otherwise, they were noted as affected. Flies were considered dead if they did not react at all after mechanical stimulation. The peptide content of each fraction was determined by analyzing 10 μ L of resuspended fractions on an LCQ-Ion trap Surveyor equipped with an Advantage ESI-LC system (Thermo Fisher Scientific, MA, USA). The peptides were eluted using the same column and elution system as the crude venom (see Mass Spectrometry of the Experimental Section) using a linear gradient from 0 to 50% B over 17 min, from 50% to 100% B over 2 min and then held for 1 min at 100% B.

Insecticidal assays with synthetic peptides were performed as described by Bende et al.²⁹ and peptides were diluted in a PBS solution at several concentrations and injected into blowflies. Injections were made using a 1.0 mL Hamilton Syringe (1000 Series Gastight, Hamilton Company, NV, USA) with a fixed 29 G needle fitted to an Arnold hand microapplicator (Burkard Manufacturing Co. Ltd., England). Each fly received 1 μ L of peptide-PBS solution and was individually housed in a 2 mL tube provided with 5 μ L of 5% sucrose solution. The paralytic activity and lethality were assessed 1 and 24 h after injection. For each toxicity assay and for the appropriate control (PBS solution; n = 10 insects), we used up to ten doses (Supplementary Table S1) of each peptide (n = 10 flies per)dose). The assay was repeated three times. Dose-response data were analyzed as detailed by Guo et al.²⁸ Briefly, the percentage of affected flies was plotted against toxin concentration and the resultant dose-response curve fitted using a Logistic function. This was then used to interpolate the respective median paralytic dose (PD_{50}) and the median lethal

Figure 1. Venom peptidome for *M. rubida*. (A) Total ion chromatogram (TIC) for *M. rubida* venom. Peptides were eluted through RP-HPLC on a C_{18} column using an ACN gradient of 1.1% min⁻¹ over 45 min and analyzed using an LCQ Advantage mass spectrometer. The circle graph is the relative abundance in the venom of each group of peptides (U_x) determined for each individual mass in the TIC (see Supplementary Table S2). The venom peptidome is mainly dominated by U_{10} peptides that account for 69% of the venom peptide content. (B) The 2D venom peptide landscape shows the LC-MS venom profile for *M. rubida* which is mostly dominated by linear peptides. Gray circles represent peptides devoid of disulfide bridges, green triangles indicate peptides with one disulfide bridge and blue diamonds denote peptides with three disulfide bridges. White triangles represent unsequenced peptides. (C) Pie graph showing the proportion of venom peptide transcript expression. (D) Pie graph showing the proportion of each peptide family expression based on TPM values (see Supplementary Table S4). U_{10} -MYRTX-Mri1a, -Mri1b, and -Mri1c and U_{20} -MYRTX-Mri1a peptide transcripts accounted for 75% of the total peptide transcript expression.

dose (LD_{50}) values using nonlinear regression analysis. The curves were fitted using Prism 7.0 (GraphPad Software, CA, USA).

Availability of Supporting Data

The MS data were deposited in the ProteomeXchange Consortium via the PRIDE partner repository (https//www.ebi.ac.uk/pride/archive/) with the data set identifier PXD015675. The transcriptome raw data are available through The European Nucleotide Archive (ENA) under study number PRJEB34828. All toxin sequences were deposited in Genbank with accession numbers MN765034 to MN765046.

Toxin Nomenclature

Novel myrmicitoxin sequences were named following the standard nomenclature for animal venom peptides,³⁰ and we used myrmicitoxins (MYRTX) to define the venom peptides of myrmicine ants.¹⁸ Since the genus/species descriptor "Mr" has been used to define myrmicitoxins from *Myrmica rubra* (UniProt accession number: P0DLS0), we propose "Mri" to distinguish myrmicitoxins from *M. rubida*. We chose not to follow the genus/species descriptor "MANr" used by Heep and colleagues to name peptides from *M. rubida*,²⁰ since the

rational nomenclature system recommends keeping the descriptor as short as possible.

RESULTS

Venom Peptidome Characterization

As per Touchard et al.,¹⁵ the masses of peptides present in the M. rubida venom were listed through LC-MS on an LCQ-ion trap mass spectrometer (Figure 1A, B). The LC-MS analysis showed 33 masses corresponding to peptides and their relative abundance in the venom (Supplementary Table S2). The LC-MS/MS of the crude venom was then performed using a Qexactive Orbitrap mass spectrometer which yielded fragmentation spectra for *de novo* sequencing using Peaks software. This resulted in 509 sequence tags with an ALC score higher than or equal to 80% (Supplementary Table S3). In addition, five peptides were isolated using C18 RP-HPLC and submitted to Edman degradation for N-terminal sequencing. Initially, the peptides selected to perform Edman sequencing were those containing cysteines (i.e., U₆-MYRTX-Mri1a, U₁₇-MYRTX-Mri1b and U₁₈-MYRTX-Mri1a) though two additional linear peptides isolated in HPLC fractions (U12-MYRTX-Mri1a and U20-MYRTX-Mri1a) were also processed. The N-terminal Edman sequencing of both U₆-MYRTX-Mri1a and U₂₀-

pubs.acs.org/jpr

Table 1. Myrmicitoxin Sequences in the Venom of M. rubida

peptide	sequence	PTMs ^a	mass calculated (Da)	mass measured (Da)	TPM ^b
U ₃ -MYRTX-Mri1a	GLPLLALLMTLPFIQHAITN	C-ter NH ₂	2174.2649	2174.2720	78 932 ^c
U ₆ -MYRTX-Mri1a	IIGPCPKKPIGIVC	1 S-S	1434.8091	1434.8104	5296 ^c
U ₁₀ -MYRTX-Mri1a	GFKSMLAKAALKILKAVAPAAAAAIADKI	C-ter NH ₂	2850.7245	2850.7212	193 522
U ₁₀ -MYRTX-Mri1b	GIKDALAKIWKILKAEVPTVAAAIENKV	C-ter NH ₂	2987.7899	2987.7941	7623
U ₁₀ -MYRTX-Mri1c	GVGSLLAKAALKILKIVAPAAAEVIANKI	C-ter NH ₂	2840.7943	2840.7956	143 717
U ₁₂ -MYRTX-Mri1a	IDPKVLESLV	C-ter NH ₂	1110.6649	1110.6654	8923 ^c
U12-MYRTX-Mri1b	IPPKAIKSLQ	C-ter NH ₂	1092.7019	1092.6543	178
U ₁₃ -MYRTX-Mri1a	DKPGQAKKIGLFDQIDKAAAAFMKLFE	C-ter NH ₂	2978.6052	2978.6051	14 184 ^c
U ₁₇ -MYRTX-Mri1a	HIIVAPCREGYVMVGNYCVEEY	1 S-S	2541.1491	2541.1502	4357 ^c
U ₁₇ -MYRTX-Mri1b	QIVWVPCNPRSKKTDDAGICRNTY	1 S–S/N- ter pyro-Q	2744.3163	2744.3211	722 ^c
U ₁₇ -MYRTX-Mri1c	YIIVAPCREGYVMVGNYCVEEY	1 S-S	2567.1535	2567.1705	d
U ₁₈ -MYRTX-Mri1a	NHDPCPPQYAEALCLNGGTCFSVTIMGSDNYNCICAPGFRGWRCQEKDLDHPVNQ	3 S–S/O- linked fucose	6223.6608	6223.6751	9359
U ₁₉ -MYRTX-Mri1a	IDSAAIATLQGGTV	C-ter NH ₂	1314.7143	1314.7193	4380
U ₂₀ -MYRTX-Mri1a	GIMESLKQLSAKAEELIKKLLAKKA	-	2739.6296	2739.6298	37 466 ^c
CL24Contig3/4_1	TAEATAEATAKALAEAFAEAIGTRA		2434.2339	_ ^e	23 367 ^c

^{*a*}PTMs, post-translational modifications. ^{*b*}TPM, transcripts per millions. ^{*c*}Sum of more than one transcript. ^{*d*}Not detected in the transcriptome. ^{*e*}Not validated through proteomics.

A	L	
A	U10-MYRTX-Mrila U10-MYRTX-Mrilb U10-MYRTX-Mrilc U10-MYRTX-Tbla U20-MYRTX-Mrila U2-MYRTX-Mrila U4-MYRTX-Tbla	HRLSYISLT-GAIIFVMAIVHAPETEAKAYPEADAVAEAIAVGEADAVGVADPGFKSMLANAIKIKAQAFAAAATADKIG
	U ₃ -MYRTX-Mrila U ₃ -MYRTX-Tbla CL24Contig4_1	MEVPKFLFIAVIVIALSSSIT-HAHPMANPDPNAENAAGAWAEPAAEPHAEAVNEAAAEAAAEAAAEAAAEAAAEAAAEAAAEAYAEAHAEAESEPGLPILALLMTLPFIQHAHTNG MKVLKFLFIAVIIVGLSGSIT-HAGPLA
B 1		
	U ₁₂ -MYRTX-Mrila U ₁₂ -MYRTX-Mrilb U ₁₂ -MYRTX-Tbla U ₁₄ -MYRTX-Tbla U ₁₉ -MYRTX-Mrila Mr-1125	MKEILLIIFAMITIMUTUNGODEDEKYLEELVGK MKEIKLIIFAMITIMUTUNGODEDEKYLEELVGK MKIKLIIFAMITIMUTUNGODEDEKNIKSEGG MKIKLIIFAMITIMUTUNGODEPENNIKSEGG MKIELLIIFAMITIMUTUNGODEPENNIKSEGG MKIELIIFAMITIMUTUNGODEDENALTEGGGYVGK MKIELLIIFAMITIMTIEVTGKSUICKLEGALLEK
B	2	
	U ₁₃ -MYRTX-Mrila U ₁₃ -MYRTX-Tbla	MK ⁱ ih ^u liya ^u an TMSPSIMAESVAE <mark>a</mark> d ⁱ begoa <mark>kki</mark> gu pdQidkaaa FMklfeg MKuiy <mark>h</mark> eslvav <mark>hav</mark> TMIPCIM <mark>c</mark> eaeae-cippQIcipdQidk <u>C</u> MaaFMDlFKG
С		*
	U ₁₇ -MYRTX-Mrila U ₁₇ -MYRTX-Mrilc U ₁₇ -MYRTX-Mrilb U ₁₇ -MYRTX-Mrilf U ₁₇ -MYRTX-Mrild U ₁₈ -MYRTX-Mrila	MKNSHTSTFT — AYV TVAFL-LISTFVTHVVTESYIIVAPC-REGY-VMV-SNYCVEY

Figure 2. *M. rubida* venom peptide precursor alignments in superfamilies -A1, -A2, -B1, -B2, and -C. Sequence alignments were achieved using Muscle with SeaView 1:4.5.4.8–2 and edited with BoxShade 3.3.1-9. Gaps were added to enhance the alignments and align cleavage sites between mature and pre-prosequences. The *Tetramorium bicarinatum* precursors (MYRTX-Tb1x) for each superfamily are also shown (see Touchard et al., 2018).¹⁵ Identical residues are shown in magenta, similar residues are in blue and conserved residues are highlighted in cyan. "*" Indicates the cleavage site releasing mature peptides.

MYRTX-Mri1a yielded a 14-residue sequence IIGPCPKKP-IGIVC and a 25-residue sequence GIMESLKQLSAKAEE-LIKKLLAKKA, respectively. The calculated monoisotopic masses of 1434.8091 Da for U_6 -MYRTX-Mri1a and 2739.6296 Da for U_{20} -MYRTX-Mri1a are consistent with the measured masses of 1434.8104 and 2739.6298 Da, respectively. The Edman sequencing of U_{12} -MYRTX-Mri1a yielded a 10-residue sequence (IDPKVLESLV) having a theoretical mass of 1111.6488 Da while the native peptide measured mass was 1110.6654 Da. This measured mass is consistent with a Cterminal amidated peptide based on a predicted mass of 1110.6649 Da. The Edman degradation sequencing of U_{18} -MYRTX-Mri1a provided a partial 19-residue N-terminal sequence of NHDPCPPQYAEALCLNGG while the Edman sequencing of U_{17} -MYRTX-Mri1b revealed two peptides present in equal amounts and having partial sequences of VPCNPRSKKTDDXXICXN and XDDAGICRNTY (Supplementary Figure S1).

To characterize the toxins and their expression levels secreted by the venom glands of *M. rubida*, the mRNA transcriptome was sequenced using an Illumina Hiseq with a resultant ca. 29 million reads. *De novo* assembly with Trinity and Oases yielded 28 149 and 16 047 contigs with a median contig size of 1500 and 1893 bp, respectively. A combined database from both assemblies was used to search for peptide sequences generated from the proteomic analyses (LC-MS/MS and Edman degradation). Additionally, the signal sequences of the identified peptide toxins were searched

Journal of Proteome Research

Peptide	Sequence	% ID	% S	Species
U ₃ -MYRTX-Mrila		100	100	Manica rubida
U ₂ -MYRTX-Tb1a		61	74	Tetramorium bicarinatum
IL_MYDEY_Eb1b		29	42	Tetramorium bicarinatum
U3-MIRIX-IDID		29	42	Tetramorium bicarinatum
U3-MYRTX-TDIC		48	52	Paraponera clavata
δ-PPOTX-Pcla	FD2FHIGSLDVHPEV Q-AHHD2QR★		52	i araponera elavata
U ₆ -MYRTX-Mrila	IIGPCPKKP-IGIMC	100	100	Manica rubida
U6-MIRIX-IDIA		40	60	Tetramorium bicarinatum
U ₆ -MIRIX-IDID		47	60	Tetramorium bicarinatum
MITTY-Maka		47	53	letramorium bicarinatum
MIIIA1-Mg ba	FRGPOLINIKGINC	46	46	Myrmecia gulosa
U ₁₀ -MYRTX-Mrila	GFKSMLAKAALKILKAWAPAAAAAIADKI ★	100	100	Manica rubida
U10-MYRTX-Mri1b	GIKDALAKI-WKILKAEVPTVAAAIENKV 🖈	57	64	Manica rubida
U10-MYRTX-Mrilc	GVGSILAKAALKILKIVAPAAAEVIANKI 🗙	76	83	Manica rubida
MIITX1-Mgla	GLGRLICKIAKKGAKIAAEAAANAAADKAAEAL 🗙	36	48	Myrmecia gulosa
U ₁₀ -MYRTX-Tbla	GLGFLAKIMCKVCMRMIKKUVBE AA KVAVDQLSQQQ	19	42	Tetramorium bicarinatum
U ₁₂ -MYRTX-Mrila		100	100	Manica rubida
U ₁₂ -MYRTX-Tbla	LSPAVLA <mark>SL</mark> A ★	50	60	Tetramorium bicarinatum
U ₁₂ -MYRTX-Mr1a	IDPKLLESLA ★	80	90	Myrmica rubra
odvp4	LDPK/VQ <mark>SI</mark> L *	60	100	Orancistrocerus drewseni
EPVP3S	INPKSWQSLL *	50	90	Eumenes pomiformis
U12-MYRTX-Mrilb	IPPKA KSLQ *	50	70	Manica rubida
U ₁₄ -MYRTX-Tbla	IPPNAUK <mark>SL</mark> Q *	40	60	Tetramorium bicarinatum
U ₁₃ -MYRTX-Mrila	DKPGQAKK <mark>IGUFDQIDKAAAAFM</mark> K <mark>UF</mark> E ★	100	100	Manica rubida
U13-MYRTX-Tbla	RPPQ IGIFDQIDK ©M AAFM D LF K★	61	74	Tetramorium bicarinatum
U ₁₇ -MYRTX-Mrila	HIIVABCREGYV-MUGNYCVEEY	100	100	Manica rubida
U17-MYRTX-Mrilb	QIVWVPCNPRSKKT-DDAGICRNTY	21	25	Manica rubida
U ₁₇ -MYRTX-Tbla	TIINAPNRCPPGHVV-VKGRCRIA*	39	43	Tetramorium bicarinatum
U ₁₇ -MYRTX-Tb1b	TVIDVPIQCPSGTVK-VGN&CRVIF	38	46	Tetramorium bicarinatum
U ₁₇ -MYRTX-Tblc		42	46	Tetramorium bicarinatum
U ₁₇ -MYRTX-Tbld		43	52	Tetramorium bicarinatum
U ₁₇ -MYRTX-Tble	NILAPLFPCPNGIIKDINGUCKELI-EX	33	41	letramorium bicarinatum
U ₁₇ -MYRTX-TDII		30	33	Tetramorium bicarinatum
U ₁₇ -MYRTX-TDIG		24	28	Tetramorium bicarinatum
U17-MIRIX-IDIN		39	40	Tetramorium bicarinatum
		22	20	Tetramorium bicarinatum
U17-MYRTX-TD1	YIIEAPPFPCPNGYMRDYEGDCREEF-E	29	41	Tetramorium hicarinatum
U17-MYRTX-Tb11	DIIDVELR-VSKCREGSRMS IGOCRKVSKR	22	30	Tetramorium bicarinatum
secapin1	YIIDVPPRCPPGSKF-IKNRCRVIV-P	23	36	Anis mellifera
secapin2	YIIDVPPRCPPGSKF-VHKRCRVIV-P	20	28	Polistes hebraeus
secapin3	YIINVPPRCPPGSKF-IKNRCRVIV-P	28	36	Vespula maculifrons
F =		20	50	copara macanji ono
U ₁₈ -MYRTX-Mrila	NHDPCPPQYABALCINGGTCFSVTINGSDNYNCICAPGFRGWRCQEKDLDHPVN	100	100	Manica rubida
MIITX ₂ -Mgla	DISDYGDPCSDDLK-DYCHHG-DCFFFKEINDPACRCYTGYYGSRCEHIDHN	- 28	44	Myrmecia gulosa

pubs.acs.org/jpr

Figure 3. Myrmicitoxin alignments in *M. rubida* venom with other Hymenoptera venom peptides.^{5,8,9,12,26,27} Resulting alignments using the T-Coffee alignment program were edited with BoxShade 3.3.1-9. Identical residues are shown in black while similar residues are highlighted in gray. Both percentage identity (% ID) and similarity (% S) are relative to the first peptide of each group. Red stars denote C-terminal amidated peptides, the threonine residues inside boxes with red dashed lines are *O*-glycosylated and N-terminal pyroglutamate is represented in boxes with solid red lines.

against transcriptomics databases in order to find other venom peptides in the *M. rubida* venom sharing the same signal sequence. The validation of mature peptide sequences was verified manually using mass spectrometry data by matching theoretical masses with those measured (Table 1). This approach permitted us to identify 14 unique peptide precursors (Figure 2). It is worth noting that the presence of one putative venom peptide (CL24Contig3/4_1) was not confirmed by our proteomic data and was therefore not considered a genuine venom peptide toxin of *M. rubida*. One additional venom peptide (U₁₇-MYRTX-Mri1c) was identified proteomically but was not found in the transcriptome and was integrated into the venom peptides accounted for ca. 51% of the total venom gland expression (Figure 1C and Supplementary Table S4).

The identified mature peptide lengths ranged from 10 to 51 residues and accounted for 97.4% of the venom peptide content. According to the proteomic data, the venom peptidome of *M. rubida* was dominated by four myrmicitoxins (i.e., U_{10} -MYRTX-Mri1a, -Mri1b, -Mri1c, and U_{20} -MYRTX-

Mri1a) accounting for 83% of the venom peptide content (Figure 1) while the expression rate (in TPM) of the transcripts encoding these four peptides represented 75% of the total expression of the transcripts encoding venom peptides (Figure 1D). Of the identified peptides, nine were linear, four had one disulfide bond, and one had three disulfide bonds.

M. rubida Venom Polypeptide Composition

A total of 13 myrmicitoxin precursors and 14 mature myrmicitoxins were identified in the *M. rubida* venom. The myrmicitoxin precursors reported here have been classified into five precursor superfamilies (i.e., superfamily-A1, -A2, -B1, -B2, and -C) corresponding to the same precursors described in the venom of *T. bicarinatum* (see Touchard et al. 2018)¹⁵ based on their pre-propeptide sequence identity (Figure 2). Briefly, superfamily-A1 is linked to aculeatoxins, a vast gene superfamily encoding most of the peptides currently described in hymenopteran venoms,¹⁴ whereas superfamilies-A2, -B1, and -B2 contain peptides that, thus far, are only described in *T. bicarinatum* venom, and superfamily-C includes secapins, a

Figure 4. Multiple sequence alignment of EGF-like peptide toxins and EGF domains from *Mus musculus, Drosophila melanogaster, Apis mellifera,* and *M. rubida* EGF-like along with the EGF3 domain of *Mus musculus* Neurogenic locus Notch. The alignments resulting from the Muscle alignment program were edited with BOXSHADE 3.3.1–9. Identical residues are highlighted in magenta. Similar residues in the peptide sequences are highlighted in blue while conserved residues are shown in cyan. Both percentage identity (% ID) and similarity (% S) are relative to the U₁₈-MYRTX-Mri1a. The residues within the black boxes are the consensus sequence for the addition of *O*-fucose by *O*-fucosyltranferase 1 (POFUT1) and the red inversed triangle indicates the modified residue. EGF-like toxins from sea anemone venoms have the consensus sequence for the addition of *O*-fucose by POFUT1 but this modification was not reported for these peptides (accession number: ω -SHTX-Sgt1a, Q76CA1; Toxin Bcs III 15.09, P86468; ω -SHTX-Shdt4a, BAG12826/B1B5J0; U-AITX-Avd12b, P0DMZ0; U-AITX-Avd12a, P0DMY9; mouse EGF, P01132; Dm_Notch_EGF3, P07207; Dm_Keren_EGF, Q9VVJ6; Apis_EGF, GAZV01019061.1). Manica_EGF was isolated after blast searches on the *M. rubida* venom gland transcriptome with Keren as the subject sequence. The disulfide connectivity was determined through Prosite-ProRule annotation for EGF domain (PRU00076).

class of cysteine-containing peptides reported in the venoms of wasps, bees and *T. bicarinatum*.^{9,24}

On the basis of the amino acid sequence alignments, we classified the mature venom peptides from M. *rubida* into ten groups. Since the molecular target of the myrmicitoxins described herein has not yet been identified, we used the activity descriptor "U" indicative of a toxin with a unknown pharmacological target. Several mature peptides from M. *rubida* shared sequence identities with toxins from T. *bicarinatum* venom, and consequently we used the same subscript to indicate the unknown activity descriptor prefix (U_x) for myrmicitoxins with at least 40% sequence similarity (Figure 3).

The peptide U₃-MYRTX-Mri1a shared a sequence identity with ant venom peptides from T. bicarinatum (Myrmicinae) and P. clavata (Paraponerinae) (61% and 48% identities with U_3 -MYRTX-Tb1a and paraponeritoxin (δ -PPOTX-Pc1a), respectively).^{5,9} The molecular target of U₃-MYRTX-Tb1a has not yet been determined but δ -PPOTX-Pc1a inhibits the inactivation of sodium channels. As noted for the venom of T. bicarinatum, U₃-MYRTX-Mri1a seems to be very sensitive to proteases with several fragments detected in the crude venom through MS (Supplementary Table S3). In the case where the crude venom was kept for several minutes at room temperature, the U₃ peptide completely disappeared from the chromatograms which indicates a rapid degradation. This peptide (including fragments) accounted for ca. 7% of the entire peptidome but this percentage is likely underestimated due to the rapid degradation of this toxin. This peptide is also encoded by one of most expressed transcripts in venom glands (78 932 TPM; Table 1) and presumably has an important functional role.

 U_6 -MYRTX-Mrila is a 14-residue peptide containing two cysteines and sharing more than 40% sequence identity with U_6 peptides from *T. bicarinatum* and 46% with MIITX₁-Mg6a from *My. gulosa*.^{14,15} These peptides possessed a net positive charge due to several cationic residues, and were also rich in aliphatic amino acids.

The alignment of the sequence of U_{10} -MYRTX-Mri1a, -Mri1b, and -Mri1c revealed strictly conserved residues that were classified into the same isotoxin group. These peptides

have substantial sequence identities and similarities with U_{10} -MYRTX-Tb1a and MIITX₁-Mg1a from *T. bicarinatum* and *My. gulosa,* respectively. They are rich in both cationic and anionic amino acids, having a positive net charge and a high alanine residue content. Two other linear polycationic peptides, U_{13} -MYRTX-Mri1a and U_{20} -MYRTX-Mri1a, are present in the venom with a relative abundance of ca. 4% and 14% in the venom peptidome, respectively.

 U_{12} -MYRTX-Mri1a and Mri1b were linear decapeptides and shared more than 60% sequence similarity with venom peptides from *T. bicarinatum* and *Myrmica rubra*.^{9,12} These peptides were weakly expressed in the venom glands and their pharmacological target has not yet been determined. However, insecticidal activity has already been noted on aphids for U_{12} -MYRTX-Mri1a²⁰ as well as the peptide U_{12} -MYRTX-Mr1a from *Myr. rubra*.¹⁹ The peptide U_{19} -MYRTX-Mr1a was linear without any sequence similarity with other ant venom peptides.

As described for both T. bicarinatum and bee venoms,^{9,24} secapin peptides were found in *M. rubida* (U₁₇-MYRTX-Mri1a, -Mri1b, and -Mri1c), albeit in relatively low abundance since these peptides account for less than 0.02% of the peptide content. The MS and MS/MS data are consistent with a N-ter pyroglutamate modification for the secapin U17-MYRTX-Mri1b (Supplementary Figure S1). Among superfamily C precursors, the mature peptide U₁₈-MYRTX-Mri1a containing three disulfide bonds is predicted by ScanProsite to have an EGF domain (Epidermal Growth Factor) which is a peculiar structural domain for animal venoms only found in the venoms of sea anemones and one ant (Figure 4). The EGF-like toxin U₁₈-MYRTX-Mri1a from *M. rubida* exhibits a sequence with a missing 146 Da mass unit in comparison to the MS measurement which is consistent with an additional fucose glycan. Moreover, the sequence -C14LNGGTC20- of U18-MYRTX-Mri1a is consistent with O-fucosylation on threonine 19 between the second and the third conserved cysteine of the EGF domain. Indeed, the -C₂XXXXS/TC₃- is a consensus sequence of threonine/serine O-fucosylation found in repeated EGF domains of Neurogenic locus Notch protein and its ligands.^{31,32} The O-fucosylation of Notch EGF domain is necessary for its function^{33,34} and maturation to the cell

Figure 5. Dose–response curves for *Lucilia caesar* blowflies injected with U_{10} -MYRTX-Mri1a, -Mri1b, -Mri1c, U_{13} -MYRTX-Mri1a, and U_{20} -MYRTX-Mri1a, 1 h (A) and 24 h (B) following injection. Values represent the mean \pm SE of three experiments. Note that after 24 h, most flies injected with U_{13} -MYRTX-Mri1a were unaffected in the dose range tested, while most of the flies injected with high doses of U_{10} -MYRTX-Mri1a and -Mri1c were paralyzed.

surface.³⁵ This reaction is carried out by the *O*-fucosyltransferase 1 (POFUT1), which is expressed in *M. rubida* venom glands albeit at very low levels. This enzyme is therefore specific to both Notch and Notch ligand EGF domains. However, it is possible that another glucosyl transferase could be involved in U₁₈-MYRTX-Mri1a fucosylation.³³

Insecticidal Activity of the Venom Peptides

Manica rubida is a predatory ant species that subdues prey using its venom. The injection in blowfly (n = 5) of 2 μ L of crude venom, equivalent to a single worker venom reservoir, showed an immediate and irreversible paralytic activity leading to death in 24 h. Then, the venom of 40 ant workers was fractionated on a RP-HPLC column into 60 fractions (one fraction per minute) and injected into blowflies. Of these 60 fractions, 14 displayed paralytic and insecticidal activities during the three time periods monitored (i.e., 5 min, 1 h, and 24 h). Further LC-MS of the active fractions revealed six different putative neurotoxic peptides (Supplementary Table S5) which were chemically synthesized for further toxicity testing (i.e., U₃-MYRTX-Mri1a, U₁₀-MYRTX-Mri1a, -Mri1b, -Mrilc, U₁₃-MYRTX-Mrila, and U₂₀-MYRTX-Mrila). Although the fractions with U12-MYRTX-Mri1a showed no insecticidal activity, this peptide was also synthesized and tested on blowflies since this peptide was reported as being insecticidal on aphids.²⁰ The injection of synthetic U₁₀-Mri1a, -Mri1b, -Mri1c, U13-Mri1a, and U20-Mri1a resulted in a rapid contractile paralysis that incapacitates flies within minutes (immediate paralysis for the highest doses), the PD₅₀ values measured 1 h after injection were $12.1 \pm 1.5 \text{ nmol} \cdot \text{g}^{-1}$, $58.4 \pm$

7.9 nmol·g⁻¹, 10.5 \pm 1.7 nmol·g⁻¹, 2.9 \pm 0.9 nmol·g⁻¹, and $69.2 \pm 8.6 \text{ nmol} \cdot \text{g}^{-1}$ (n = 3), respectively (Figure 5A). The paralysis induced by all peptides was reversible for the lowest and moderate doses after 24 h following the injection, but was irreversible or lethal for the higher doses (except for U_{13} -Mri1a, for which only 10% mortality was noted at 150 nmol g^{-1} , whereas 60% of the flies were noted as normal) (Figure 5B). Consequently, the lethality of these five neurotoxic peptides is weak with $LD_{50}(24 h)$ values estimated to be 98.0 \pm 7.3 nmol·g⁻¹ and 75.4 \pm 2.3 nmol·g⁻¹ (*n* = 3) for U₁₀-Mri1b and U₂₀-Mri1a, respectively. Despite a high amino acid sequence identity with U_{10} -Mri1b, both U_{10} -Mri1a and -Mrilc were in most cases not lethal after 24 h in the dose range tested even though the paralysis was irreversible (paralyzed flies were monitored over 48 h). The PD₅₀ values measured 24 h after injection were 20.5 \pm 7.0 nmol·g⁻¹ and 29.3 \pm 2.0 nmol·g⁻¹ (n = 3) for U₁₀-Mri1a and U₁₀-Mri1c, respectively. No paralytic or lethal effects of U₃-MYRTX-Mri1a were observed within the dose range tested (0.05 to 54.6 nmol g^{-1}) 48 h following injection. Therefore, the biological effects of the insecticidal fraction containing U₃-MYRTX-Mri1a (F43; Supplementary Table S5) is likely linked to the unidentified protein which coelutes with U3-MYRTX-Mri1a. Although Heep and colleagues have reported insecticidal activity on aphids for U₁₂-MYRTX-Mri1a,²⁰ we did not observe neurotoxic activities on blowflies at the highest dose of 203 nmol \cdot g⁻¹ (1 μ L of 3.8 mmol L⁻¹ injected/fly).

Integrative "-omics" methodologies have recently been applied to four ant species providing a comprehensive characterization of their venom peptidomes.¹³⁻¹⁶ Here, we employed a venomics strategy to characterize the venom peptidome of the red ant M. rubida for which a previous MS-based analysis revealed hundreds of masses corresponding to peptides, among which some were structured by one or three disulfide bonds.⁴ Interestingly, while we only obtained 13 transcripts encoding myrmicitoxin peptides, we found that 450 of the 509 sequence tags from the MS data (ca. 80%) were linked to the 13 identified transcripts (see Supplementary Table S3). The striking discrepancy between peptide count from mass spectrometry data and the number of venom precursors is likely due to peptide degradation in the crude venom. Indeed, it is now well established that ant venom peptidomes, including M. rubida venom, are mainly composed of linear and polycationic peptides which generally have low stability and are very susceptible to degradation by proteases.^{36,37} The multiple fragments generated from peptide degradation may explain the high number of masses detected by highly sensitive mass spectrometry. Furthermore, several MS investigations have already reported intact peptides plus multiple truncated/ fragmented forms in ant venoms.^{13,15,38} Thus, the peptidic venom composition of M. rubida appeared to be relatively simple in comparison to nonhymenopteran venoms such as those of cone snails, spiders, or scorpions. However, such "simplicity" was also noted for the venom peptidome of ants belonging to other subfamilies such as My. gulosa (Myrmeciinae) and Odontomachus monticola (Ponerinae), whereas the peptidome of T. bicarinatum (also a Myrmicinae) is comparatively complex.^{13–15} Aside from the peptides U_{19} and U₂₀-Mri1a, the myrmicitoxins described here present similarities with those of other myrmicine species, supporting the idea that ants from the same clade exhibit similar venom profiles.

Insecticidal Peptides of M. rubida Venom

Although insecticidal peptides have been reported for a few ant venoms, this study is the first that deals with the insecticidal arsenal of an ant species belonging to the subfamily Myrmicinae. Indeed, the myrmecotoxins U₁₀-Mri1a, -Mri1b, -Mrilc, U113-Mrila, and U20-Mrila, which dominated the venom peptidome of M. rubida, have a paralytic effect on blowflies, this effect being irreversible at high doses. Nevertheless, each of these toxins has only a weakly potent insecticidal activity, having LD₅₀ (24 h), higher than 75 nmol·g⁻¹ that is 325-fold higher than the most potent insecticidal spider venom peptide (i.e., β -Diguetoxin-Dc1a)²⁹ which was tested under similar conditions. Therefore, the rapid death observed for blowflies after the injection of M. rubida crude venom is suggestive of a synergic action of insecticidal peptides as noted for ponericins from the venom of the ponerine ant Neoponera goeldii.¹⁰ The five M. rubida insecticidal peptides, rich in cationic and aliphatic residues, are predicted to have a secondary structure forming a fulllength α -helix or two α -helices separated by a loop (noted using the PepFold3 server;³⁹ Supplementary Figure S2). The helix wheel projections also showed amphipathic features with distinguishable hydrophobic and hydrophilic domains, suggesting that these myrmicitoxins are membrane-active as is known for most insecticidal linear peptides described in ant venoms. Note that similar peptides (e.g., MIITX₁-Mg1a) also paralyze

arthropods and elicit pain in mammals via pore formation in neuronal cell membranes.¹⁴ Thus, offensive (insecticidal activity) and defensive (triggering pain in vertebrates) functions are combined and are favored by the abundance of these peptides in the *M. rubida* venom peptidome. Furthermore, the antimicrobial properties of membrane-active venom peptides^{9,10} are involved in protecting the colony from infection linked to the storage and consumption of captured prey.

EGF-like Venom Peptide

The *M. rubida* venom peptidome also revealed the presence of an EGF-like toxin (U₁₈-MYRTX-Mri1a) sharing sequence similarities with the EGF-like toxins described in the venoms of the ant My. gulosa¹⁴ and several sea anemones, 40-42 indicating that this scaffold has been retained in several invertebrate clades. The EGF-like toxin isolated from the venom of the sea anemone Stichodactyla gigantea has a potent paralytic effect on crabs (ED₅₀ of 215 μ g/kg) and exhibits a weak EGF activity on human A431 cells (i.e., 500-1000 times less potency than the human EGF).⁴² However, the insecticidal assays we conducted using the *M. rubida* venom fractions suggest that U₁₈-MYRTX-Mrila is not toxic for blowflies. Considering that EGFs are involved in gut epithelial stem cell proliferation during development or after injury,^{43,44} the U₁₈-MYRTX-Mri1a peptide might be implicated in the renewal of both the venom gland and the sac epithelia, both being constantly exposed to insecticidal peptides that presumably trigger cell membrane disruption. This hypothesis is further supported by the highest sequence identity percentage (47% identity) shared by mature U18-MYRTX-Mri1a with the EGF-like domain of Keren. Indeed, apart from its role in developmental and olfactory learning, like M. musculus EGF, the Keren peptide is involved in gut epithelium renewal.^{45,46} Indeed, other growth factors have also been reported as components of other animal venoms. For instance, the Nerve Growth Factors ("NGFs"), which are involved in the maintenance and proliferation of neurons, were noted in snake venoms with an activity similar to that of mouse NGFs (no toxic effects on prey).⁴⁷⁻⁴⁹ Also, the venom NGF of the snake Naja kaouthia is a potent inhibitor of metalloproteinases, suggesting a protective role.⁵⁰ Nevertheless, the potential protective role of the M. rubida U18-MYRTX-Mri1a against cytolytic peptides remains to be demonstrated.

CONCLUDING REMARKS

Similar to other hymenopteran venoms, M. rubida venom is mostly composed of small polycationic and amphiphilic peptides. These peptides are the main components responsible for the insecticidal activity of the venom leading to the rapid and irreversible contractile paralysis of insects. Remarkably, one peptide isolated and characterized in this study is structured by three disulfide bonds. This is an EGF-like toxin with an O-fucose modification, a post-translational modification never before described in animal venoms. We hypothesized that this unusual venom peptide protects the venom apparatus from the cytolytic components of the venom. Several other peptides from the M. rubida venom share sequence identities with other ant venom toxins, suggesting a conserved function across ant venoms, but their biological role remains unknown. In conclusion, this study, combined with venom investigations conducted on other ant clades, confirms

that several stinging ants have evolved small polycationic, amphiphilic peptides in order to subdue their prey.

ASSOCIATED CONTENT

Supporting Information

Supporting Information The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jproteome.0c00048.

Table S1: Concentration of each synthetic myrmicitoxin used for insecticidal assays; Table S2: Peptide mass fingerprint of *M. rubida* venom; Table S3: The list of sequence tags yielded from Peaks software interpretation of MS/MS spectra; Table S4: Most expressed toxins from the venom apparatus of *M. rubida*; Table S5: Insecticidal activity of *M. rubida* venom fractions on blowflies; Figure S1: Integrative methodology for the sequencing of U₁₇-MYRTX-Mri1b; Figure S2: *De novo* structure prediction of insecticidal myrmicitoxins of *M. rubida* venom (PDF)

AUTHOR INFORMATION

Corresponding Author

Axel Touchard – Équipe BTSB-EA 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, 81012 Albi, France; Ocrid.org/0000-0002-7766-0088; Phone: +(33)5 63 48 64 32; Email: axel.touchard2@gmail.com

Authors

- Samira R. Aili Neurotoxin Research Group, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Nathan Téné Équipe BTSB-EA 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, 81012 Albi, France
- Valentine Barassé Équipe BTSB-EA 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, 81012 Albi, France
- **Christophe Klopp** Unité de Mathématique et Informatique Appliquées de Toulouse, UR0875, INRA Toulouse, 31326 Castanet-Tolosan, France
- Alain Dejean CNRS, UMR EcoFoG, AgroParisTech, CIRAD, INRAE, Université des Antilles, Université de la Guyane, 97310 Kourou, France; Ecolab, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
- **R. Manjunatha Kini** Protein Science Laboratory, Department of Biological Sciences, Faculty of Science and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117543, Singapore
- Mrinalini Protein Science Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543, Singapore
- Laurent Coquet CNRS UMR 6270, Normandie University, UNIROUEN, PISSARO, 76130 Mont-Saint-Aignan, France
- **Thierry Jouenne** CNRS UMR 6270, Normandie University, UNIROUEN, PISSARO, 76130 Mont-Saint-Aignan, France
- Benjamin Lefranc Inserm U 1239, Normandie University, UNIROUEN, Plate-forme de Recherche en Imagerie Cellulaire de Normandie (PRIMACEN), 76000 Rouen, France
- Jérôme Leprince Inserm U 1239, Normandie University, UNIROUEN, Plate-forme de Recherche en Imagerie Cellulaire

de Normandie (PRIMACEN), 76000 Rouen, France; orcid.org/0000-0002-7814-9927

Pierre Escoubas – VenomeTech, 06560 Valbonne, France

- Graham M. Nicholson Neurotoxin Research Group, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; orcid.org/0000-0002-4277-4296
- Michel Treilhou Équipe BTSB-EA 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, 81012 Albi, France
- Elsa Bonnafé Équipe BTSB-EA 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, 81012 Albi, France

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jproteome.0c00048

Author Contributions

pubs.acs.org/jpr

[#]Michel Treilhou and Elsa Bonnafé contributed equally. AT, EB, MT, RMK, PE, and GMN jointly directed this work. AT, SRA, NT, LC, BL, JL, CK, Mrinalini, and EB generated the data. AT and EB drafted the manuscript and interpreted the results. AT, MT, EB, and AD wrote the paper. All authors contributed important intellectual content to the study and have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The PISSARO Platform is cofunded by The European Union and Région Normandie through the European Regional Development Fund (ERDF). This research was cofunded by the Southeast Asian Biodiversity Genomics Center, National University of Singapore, Grant No. R-154-000-648-646. We would like to thank Jean-Pierre Andrieu from the IBS platform of the Partnership for Structural Biology and the Institut de Biologie Structurale in Grenoble (PSB/IBS), for assistance and access to the Protein Sequencing Facility. We are grateful to Andrea Yockey for proofreading the manuscript. The collection of *Manica rubida* workers in France is subject to a declarative procedure (NOR: TREL1820249A/54) for noncommercial use at the competent administrative authority, in accordance with Article L.412-7 of the French environmental code.

REFERENCES

(1) Cerdá, X.; Dejean, A. Predation by ants on arthropods and other animals. In *Predation in the Hymenoptera: An Evolutionary Perspective;* Polidori, C., Ed.; TransWorld Research Network: Kerala, India, 2011; pp 39–78.

(2) Wilson, E. O. Success and Dominance in Ecosystems: The Case of the Social Insects; Ecology Institute: Oldendorf/Luhe, Germany, 1990; Vol. 2.

(3) Aili, S. R.; Touchard, A.; Escoubas, P.; Padula, M. P.; Orivel, J.; Dejean, A.; Nicholson, G. M. Diversity of peptide toxins from stinging ant venoms. *Toxicon* **2014**, *92*, 166–178.

(4) Touchard, A.; Koh, J. M. S.; Aili, S. R.; Dejean, A.; Nicholson, G. M.; Orivel, J.; Escoubas, P. The complexity and structural diversity of ant venom peptidomes is revealed by mass spectrometry profiling. *Rapid Commun. Mass Spectrom.* **2015**, *29*, 385–396.

(5) Rifflet, A.; Gavalda, S.; Téné, N.; Orivel, J.; Leprince, J.; Guilhaudis, L.; Génin, E.; Vétillard, A.; Treilhou, M. Identification and characterization of a novel antimicrobial peptide from the venom of the ant *Tetramorium bicarinatum*. *Peptides* **2012**, *38* (2), 363–370.

(6) Pluzhnikov, K. A.; Kozlov, S. A.; Vassilevski, A. A.; Vorontsova, O. V.; Feofanov, A. V.; Grishin, E. V. Linear antimicrobial peptides from *Ectatomma quadridens* ant venom. *Biochimie* **2014**, *107*, 211–215.

(7) Zelezetsky, I.; Pag, U.; Antcheva, N.; Sahl, H. G.; Tossi, A. Identification and optimization of an antimicrobial peptide from the ant venom toxin pilosulin. *Arch. Biochem. Biophys.* **2005**, 434 (2), 358–64.

(8) Tani, N.; Kazuma, K.; Ohtsuka, Y.; Shigeri, Y.; Masuko, K.; Konno, K.; Inagaki, H. Mass spectrometry analysis and biological characterization of the predatory ant *Odontomachus monticola* venom and venom sac components. *Toxins* **2019**, *11* (1), 50.

(9) Cologna, C. T.; Cardoso, J. d. S.; Jourdan, E.; Degueldre, M.; Upert, G.; Gilles, N.; Uetanabaro, A. P. T.; Costa Neto, E. M.; Thonart, P.; de Pauw, E. Peptidomic comparison and characterization of the major components of the venom of the giant ant *Dinoponera quadriceps* collected in four different areas of Brazil. J. Proteomics **2013**, 94, 413–422.

(10) Orivel, J.; Redeker, V.; Le Caer, J. P.; Krier, F.; Revol-Junelles, A. M.; Longeon, A.; Chaffotte, A.; Dejean, A.; Rossier, J. Ponericins, new antibacterial and insecticidal peptides from the venom of the ant *Pachycondyla goeldii*. J. Biol. Chem. **2001**, 276 (21), 17823–9.

(11) Piek, T.; Duval, A.; Hue, B.; Karst, H.; Lapied, B.; Mantel, P.; Nakajima, T.; Pelhate, M.; Schmidt, J. O. Poneratoxin, a novel peptide neurotoxin from the venom of the ant, *Paraponera clavata. Comp. Biochem. Physiol., C: Comp. Pharmacol.* **1991**, *99* (3), 487–495.

(12) Touchard, A.; Brust, A.; Cardoso, F. C.; Chin, Y. K. Y.; Herzig, V.; Jin, A.-H.; Dejean, A.; Alewood, P. F.; King, G. F.; Orivel, J.; Escoubas, P. Isolation and characterization of a structurally unique β -hairpin venom peptide from the predatory ant *Anochetus emarginatus*. *Biochim. Biophys. Acta, Gen. Subj.* **2016**, *1860* (11A), 2553–2562.

(13) Kazuma, K.; Masuko, K.; Konno, K.; Inagaki, H. Combined venom gland transcriptomic and venom peptidomic analysis of the predatory ant *Odontomachus monticola*. *Toxins* **2017**, *9* (10), 323.

(14) Robinson, S. D.; Mueller, A.; Clayton, D.; Starobova, H.; Hamilton, B. R.; Payne, R. J.; Vetter, I.; King, G. F.; Undheim, E. A. A comprehensive portrait of the venom of the giant red bull ant, *Myrmecia gulosa*, reveals a hyperdiverse hymenopteran toxin gene family. *Sci. Adv.* **2018**, *4* (9), No. eaau4640.

(15) Touchard, A.; Téné, N.; Song, P. C. T.; Lefranc, B.; Leprince, J.; Treilhou, M.; Bonnafé, E. Deciphering the molecular diversity of an ant venom peptidome through a venomics approach. *J. Proteome Res.* **2018**, *17* (10), 3503–3516.

(16) Barassé, V.; Touchard, A.; Téné, N.; Tindo, M.; Kenne, M.; Klopp, C.; Dejean, A.; Bonnafé, E.; Treilhou, M. The peptide venom composition of the fierce stinging ant *Tetraponera aethiops* (Formicidae: Pseudomyrmecinae). *Toxins* **2019**, *11* (12), 732.

(17) Morgan, E. D. Chemical sorcery for sociality: exocrine secretions of ants (Hymenoptera: Formicidae). *Myrmecol. News* **2008**, *11*, 79–90.

(18) Touchard, A.; Aili, S. R.; Fox, E. G. P.; Escoubas, P.; Orivel, J.; Nicholson, G. M.; Dejean, A. The biochemical toxin arsenal from ant venoms. *Toxins* **2016**, *8* (1), 30.

(19) Heep, J.; Klaus, A.; Kessel, T.; Seip, M.; Vilcinskas, A.; Skaljac, M. Proteomic analysis of the venom from the ruby ant *Myrmica rubra* and the isolation of a novel insecticidal decapeptide. *Insects* **2019**, *10* (2), 42.

(20) Heep, J.; Skaljac, M.; Grotmann, J.; Kessel, T.; Seip, M.; Schmidtberg, H.; Vilcinskas, A. Identification and functional characterization of a novel insecticidal decapeptide from the myrmicine ant *Manica rubida. Toxins* **2019**, *11* (10), 562.

(21) Schmidt, J. O.; Blum, M. S. Biochemical constituents on venom of Harvester ant, *Pogonomyrmex badius. Comp. Biochem. Physiol., C: Comp. Pharmacol.* **1978**, *61* (1), 239–247.

(22) von Sicard, N. A.; Candy, D. J.; Anderson, M. The biochemical composition of venom from the pavement ant (*Tetramorium caespitum L.*). *Toxicon* **1989**, 27 (10), 1127–33.

(23) Blatrix, R.; Galkowski, C.; Lebas, C.; Wegnez, P. Guide des Fourmis de France; Delachaux et Niestlé, 2013.

(24) Monnin, T.; Espadaler, X.; Lenoir, A. Guide des Fourmis de France; Belin, 2014.

(25) Cabau, C.; Escudié, F.; Djari, A.; Guiguen, Y.; Bobe, J.; Klopp, C. Compacting and correcting Trinity and Oases RNA-Seq de novo assemblies. *PeerJ* 2017, *5*, No. e2988.

(26) Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. *Bioinformatics* **2010**, *26* (5), 589–595.

(27) Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The sequence alignment/map format and SAMtools. *Bioinformatics* **2009**, *25* (16), 2078–2079.

(28) Guo, S.; Herzig, V.; King, G. F. Dipteran toxicity assays for determining the oral insecticidal activity of venoms and toxins. *Toxicon* **2018**, *150*, 297–303.

(29) Bende, N. S.; Dziemborowicz, S.; Mobli, M.; Herzig, V.; Gilchrist, J.; Wagner, J.; Nicholson, G. M.; King, G. F.; Bosmans, F. A distinct sodium channel voltage-sensor locus determines insect selectivity of the spider toxin Dc1a. *Nat. Commun.* **2014**, *5*, 4350–4350.

(30) King, G. F.; Gentz, M. C.; Escoubas, P.; Nicholson, G. M. A rational nomenclature for naming peptide toxins from spiders and other venomous animals. *Toxicon* **2008**, *52* (2), 264–276.

(31) Harvey, B. M.; Rana, N. A.; Moss, H.; Leonardi, J.; Jafar-Nejad, H.; Haltiwanger, R. S. Mapping sites of O-glycosylation and fringe elongation on *Drosophila* Notch. *J. Biol. Chem.* **2016**, *291* (31), 16348–16360.

(32) Müller, J.; Rana, N. A.; Serth, K.; Kakuda, S.; Haltiwanger, R. S.; Gossler, A. O-fucosylation of the notch ligand mDLL1 by POFUT1 is dispensable for ligand function. *PLoS One* **2014**, *9* (2), No. e88571.

(33) Okajima, T.; Irvine, K. D. Regulation of notch signaling by olinked fucose. *Cell* **2002**, *111* (6), 893–904.

(34) Shi, S.; Stanley, P. Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathways. *Proc. Natl. Acad. Sci. U. S. A.* **2003**, *100* (9), 5234–5239.

(35) Ishio, A.; Sasamura, T.; Ayukawa, T.; Kuroda, J.; Ishikawa, H. O.; Aoyama, N.; Matsumoto, K.; Gushiken, T.; Okajima, T.; Yamakawa, T.; et al. O-fucose monosaccharide of *Drosophila* Notch has a temperature-sensitive function and cooperates with O-glucose glycan in Notch transport and Notch signaling activation. *J. Biol. Chem.* **2015**, *290* (1), 505–519.

(36) Kim, H.; Jang, J. H.; Kim, S. C.; Cho, J. H. De novo generation of short antimicrobial peptides with enhanced stability and cell specificity. *J. Antimicrob. Chemother.* **2014**, *69* (1), 121–132.

(37) Bernard J, M.; Kara, P.; Lisa Cencia, R.; Phillip W, G. Degradation of naturally occurring and engineered antimicrobial peptides by proteases. *Adv. Biosci. Biotechnol.* **2011**, 2011, 404–408.

(38) Cologna, C. T.; Rodrigues, R. S.; Santos, J.; de Pauw, E.; Arantes, E. C.; Quinton, L. Peptidomic investigation of *Neoponera villosa* venom by high-resolution mass spectrometry: seasonal and nesting habitat variations. *J. Venomous Anim. Toxins Incl. Trop. Dis.* **2018**, 24 (1), 6.

(39) Lamiable, A.; Thévenet, P.; Rey, J.; Vavrusa, M.; Derreumaux, P.; Tufféry, P. PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex. *Nucleic Acids Res.* **2016**, *44* (W1), W449–W454.

(40) Honma, T.; Kawahata, S.; Ishida, M.; Nagai, H.; Nagashima, Y.; Shiomi, K. Novel peptide toxins from the sea anemone *Stichodactyla haddoni*. *Peptides* **2008**, *29* (4), 536–544.

(41) Kozlov, S.; Grishin, E. The mining of toxin-like polypeptides from EST database by single residue distribution analysis. *BMC Genomics* **2011**, *12* (1), 88.

(42) Shiomi, K.; Honma, T.; Ide, M.; Nagashima, Y.; Ishida, M.; Chino, M. An epidermal growth factor-like toxin and two sodium channel toxins from the sea anemone *Stichodactyla gigantea*. *Toxicon* **2003**, *41* (2), 229–236.

(43) Sato, C.; Zhao, G.; Ilagan, X. G. An overview of notch signaling in adult tissue renewal and maintenance. *Curr. Alzheimer Res.* **2012**, 9 (2), 227–240.

(44) Schneider, M.; Al-Shareffi, E.; Haltiwanger, R. S. Biological functions of fucose in mammals. *Glycobiology* 2017, 27 (7), 601–618.
(45) Buchon, N.; Broderick, N. A.; Kuraishi, T.; Lemaitre, B. *Drosophila* EGFR pathway coordinates stem cell proliferation and gut remodeling following infection. *BMC Biol.* 2010, 8 (1), 152.

(46) Jiang, H.; Grenley, M. O.; Bravo, M.-J.; Blumhagen, R. Z.; Edgar, B. A. EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in *Drosophila*. *Cell stem cell* **2011**, 8 (1), 84–95.

(47) Trummal, K.; Tõnismägi, K.; Paalme, V.; Järvekülg, L.; Siigur, J.; Siigur, E. Molecular diversity of snake venom nerve growth factors. *Toxicon* **2011**, 58 (4), 363–368.

(48) Guo, L.-y.; Zhu, H.; Zhu, J.-f.; Jing, N.-h.; Feng, L.; Zhou, Y.-c. Identification of a serine protease with nerve growth promoting activity from snake venom. *NeuroReport* **1998**, *9* (16), 3577–3581.

(49) Paalme, V.; Trummal, K.; Samel, M.; Tõnismägi, K.; Järvekülg, L.; Vija, H.; Subbi, J.; Siigur, J.; Siigur, E. Nerve growth factor from *Vipera lebetina* venom. *Toxicon* **2009**, *54* (3), 329–336.

(50) Wijeyewickrema, L. C.; Gardiner, E. E.; Gladigau, E. L.; Berndt, M. C.; Andrews, R. K. Nerve growth factor inhibits metalloproteinasedisintegrins and blocks ectodomain shedding of platelet glycoprotein VI. J. Biol. Chem. **2010**, 285 (16), 11793–11799.
1639	Article 3				
1640	In preparation for <i>Toxins</i>				
1641					
1642	Myrmicine ant venoms: first insights into their peptidic diversity				
1643					
1644	Valentine Barassé ^{1*} , Nathan Téné ¹ , Christophe Klopp ² , Niklas Tysklind ⁴ , Hadrien Lalägue ⁴				
1645	Jérôme Orivel ⁴ , Valérie Troispoux ⁴ , Frédérick Petitclerc ⁴ , Martin Kenne ³ , Maurice Tindo ³ ,				
1646	Michel Treilhou ¹ , Elsa Bonnafé ^{1#} , Axel Touchard ^{1,4#}				
1647					
1648	¹ EA-7417, Institut National Universitaire Champollion, Place de Verdun, 81012 Albi				
1649	France; <u>nathan.tene@univ-jfc.fr</u> (N.T.); <u>elsa.bonnafe@univ-jfc.fr</u> (E.B.)				
1650	michel.treilhou@univ-jfc.fr (M.T.)				
1651	² Unité de Mathématique et Informatique Appliquées de Toulouse, UR0875, INRA				
1652	Toulouse, Castanet-Tolosan, France ; christophe.klopp@inra.fr (C.K.)				
1653	³ Laboratory of Animal Biology and Physiology, Faculty of Science, University of Douala,				
1654	Cameroon, P.O.Box. 24157 Douala, Cameroon; tindodouala@yahoo.com (M.T.)				
1655	medoum68@yahoo.fr (M.K.)				
1656	⁴ CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRA, Université des Antilles, Université				
1657	de Guyane, 97310 Kourou, France; <u>axel.touchard2@gmail.com</u> (A.T)				
1658	<u>niklas.tysklind@ecofog.gf</u> (N.T.); <u>hadrien.lalague@ecofog.gf</u> (H.L.)				
1659	jerome.orivel@ecofog.gf (J.O.); valerie.troispoux@ecofog.gf (V.T.)				
1660	frederick.petitclerc@ecofog.gf (F.P.)				
1661	[#] These authors contributed equally to this study.				
1662					
1663	Corresponding author:				
1664	* EA-7417, Institut National Universitaire Champollion, Place de Verdun, 81012 Albi				
1665	France. Phone: +(33)5 63 48 17 00. Email: <u>valentine.barasse@gmail.com</u>				

1666 Abstract (200/200 words):

1667 Among the stinging ants, Myrmicinae represents the most speciose phylogenetic 1668 subfamily. Venom composition already described for these venomous organisms is extremely 1669 variable with alkaloids predominant in some tribes. Nevertheless, proteomics studies revealed 1670 that some myrmicine ant venoms are peptide-rich. Using integrated transcriptomic and 1671 proteomic approaches, we characterized the venom peptidomes of six ants belonging to the 1672 different phylogenetic tribes of Myrmicinae. We identified a total of 78 myrmicitoxins 1673 precursors which can be classified into 37 different families according to their mature 1674 sequences. Most of those peptidic toxins were linear, amphiphilic and polycationic. However, 1675 the presence of peptides containing one to three disulfide bonds was also noted. Furthermore, 1676 the venom of Daceton armigerum consisted in a complex of dimeric peptides. Myrmicine ant 1677 venoms showed heterogeneous peptidic compositions, with some exhibiting more diversity 1678 than others. We also observed several analogous toxins among the venom peptidomes of this 1679 study. Moreover, an analysis on signal sequences revealed that myrmicitoxin precursors are 1680 divided up to eight superfamilies, some of which have already been described in others aculeate 1681 hymenoptera. Thus, our results suggest that mature venom peptides from myrmicine ant might 1682 have derived from a reduced number of precursors, although genomic studies are needed for 1683 confirmation.

1684

1685 Keywords: toxin precursors; *Myrmicinae*; molecular diversity; dimeric peptides

1686

1687 Key Contribution: This study provides novel insights into both the peptidic diversity and the1688 evolution of myrmicine ant venoms.

1689

1690 **1. Introduction**

1691 Venoms are fine-tuned biochemical arsenals mainly used by animals to defend 1692 themselves and/or capture preys (Casewell et al., 2013). Most investigations conducted on 1693 arthropod venoms (e.g. scorpions, spiders, centipedes, and insects) revealed mixtures of toxins 1694 with peptides as the dominant components with variable amino acid sequences and 1695 tridimensional structures (Daly & Wilson, 2018; Walker, Robinson, et al., 2018). Although ants 1696 are dominant terrestrial venomous animals in terms of species richness and biomass, their 1697 venom peptides have been less studied in comparison to others venomous arthropods. The small 1698 size of these insects and consequently the difficulty in gathering large amounts of venom partly 1699 explains that ant venoms were overlooked. Recently, proteotranscriptomic investigations of ant

1700 venoms provide several comprehensive peptidomes in the subfamilies *Pseudomyrmecinae*, 1701 Paraponerinae, Myrmicinae, Ponerinae and Myrmeciinae (Aili et al., 2020; Barassé et al., 1702 2019; Kazuma et al., 2017; Robinson et al., 2018; Touchard, Aili, et al., 2020; Touchard et al., 1703 2018) and start to reveal the molecular diversity of these toxins. The comprehensive inclusion 1704 of ant species from different subfamilies and with different ecologies should enhance our 1705 understanding of the molecular diversification of ant venom peptidomes and then lead to further 1706 discoveries. Within Formicidae, the subfamily of *Myrmicinae* is the most speciose phylogenetic 1707 ant subfamily with actually 48% of described species (Antweb, consulted on 16/06/20). The 1708 venom composition already described for these ants is extremely variable with alkaloids 1709 predominant in some tribes (Morgan, 2008; Touchard, Aili, et al., 2016). Nevertheless, 1710 proteomic analyses have revealed that the venoms of four genera (i.e., Tetramorium, 1711 Pogonomyrmex, Myrmica, and Manica) are peptide-rich (Heep, Klaus, et al., 2019; Heep, 1712 Skaljac, et al., 2019; J. O. Schmidt & Blum, 1978b; von Sicard, Candy, & Anderson, 1989). 1713 Further investigations into the venom composition of other myrmicine species is therefore 1714 necessary to understand the intrinsic chemical properties of these venoms and gather 1715 informations on the relationships between ant phylogeny and venom composition. *Myrmicinae* 1716 are indeed a hyperdiverse clade occupying most of the terrestrial habitats and exhibiting wide 1717 variation in ecology behavior, colony structure and diet (Blaimer, Ward, Schultz, Fisher, & 1718 Brady, 2018; Ward et al., 2015).

1719 This study aimed to draw first insights into the peptidic diversity of myrmicine ant 1720 venoms. We thus combined transcriptomics and proteomics to decipher venoms from ants 1721 belonging to the six tribes composing this phylogenetic subfamily: Myrmica ruginodis 1722 californicus (Myrmicini), Pogonomyrmex (Pogonomyrmecini), Stenamma debile 1723 (Stenammini), Solenopsis saevissima (Solenopsidini), Daceton armigerum (Attini) and 1724 Tetramorium africanum (Crematogastrini). We also compared the venom composition of these 1725 ants with previously described ant venoms.

1726

1727 **2. Materials and Methods**

1728

2.1. Collection and preparation of venom samples

1729 Ant workers were collected from different locations in France, French Guiana, Cameroon, 1730 and USA. Ant venom reservoirs were dissected and pooled in a solution containing 10%1731 acetonitrile (ACN)/ ultrapure water (v/v) (Supplementary Table I), and the membranes were 1732 disrupted using ultrasonic waves for 2 min. The samples were then centrifuged for 5 min at 1733 14,400 rpm, and the supernatant was collected and dried using a speed vacuum prior to storage
1734 at -20 °C until proteomic analysis.

1735

1736 2.2. Mass sp

2.2. Mass spectrometry analysis

1737 A preliminary LC-MS analysis of crude venoms was carried out on the LCQ-Ion trap Advantage equipped with an ESI-LC system Accela (ThermoFisher Scientific, Courtabœuf, 1738 1739 France). Peptides were separated using an Acclaim RSLC C_{18} column (2.2 µm; 2.1 × 150 mm; 1740 Thermofisher, France). The mobile phase was a gradient prepared from 0.1% formic acid 1741 (FA)/water (v/v) (solvent A) and 0.1% FA/ACN (v/v) (solvent B). The peptides were eluted 1742 using a linear gradient from 0 to 50% of solvent B over 45 min, then from 50 to 100% over 10 1743 min, and finally held for 5 min at a 250 µL.min⁻¹ flow rate. The electrospray ionization mass 1744 spectrometry detection was performed in positive mode with the following optimized 1745 parameters: the capillary temperature was set at 300 °C, the spray voltage was 4.5 kV, and the 1746 sheath gas and auxiliary gas were set at 50 and 10 psi, respectively. The acquisition range was 1747 from 100 to 2000 m/z. The area value of each peak corresponding to a peptide was manually integrated using the peak ion extraction function in Xcalibur software (version 4.0, 1748 1749 ThermoFisher Scientific, Courtabœuf, France). The relative peak area indicates the contribution 1750 of each peptide to all the peptides identified in the venom, providing a measure of relative 1751 abundance.

1752 Reduction of disulfide bonds was achieved by mixing 30μ L of crude venom with 30μ L of 1753 100 mol.L⁻¹ ammonium bicarbonate buffer (pH 8) containing 10 mmol.L⁻¹ dithiothreitol (DTT) 1754 followed by an incubation for 30 min at 56 °C. Then, the reduced venom was alkylated by 1755 adding 10 μ L of 50 mol.L⁻¹ iodoacetamide (IA) for 15 min at room temperature in the dark. As 1756 chemical reduction/alkylation results in a mass increase of 57 Da for each cysteine, the 1757 examination of mass shifts in the mass spectra of reduced/alkylated samples permitted us to 1758 determine the presence and the number of disulfide bonds in the corresponding peptides.

1759 Hexanic extraction of venoms was conducted by mixing an aqueous solution of crude 1760 venom (500 μ L) with 500 μ L of hexane. After phase separation, the hexane phase was discarded 1761 and the operation was repeated twice. The aqueous phase was analyzed through LC-MS 1762 according to the protocol described earlier.

1763

1764 *2.3. De novo orbitrap mass spectrometry-based sequencing*

1765 Each crude venom was re-suspended in water and then desalted using $ZipTip^{\ensuremath{\mathbb{R}}} C_{18}$ 1766 (Merck Millipore, Burlington, VT, USA) after adding trifluoroacetic acid (TFA) at a final 1767 concentration of 0.5%. Then, the venom sample was subjected to *de novo* sequencing using a 1768 Q-Exactive Plus mass spectrometer coupled to a Nano-LC Proxeon 1000 (ThermoFisher 1769 Scientific, Waltham, MA, USA). Peptides were separated through chromatography with the 1770 following parameters: Acclaim PepMap100 C₁₈ pre-column (2 cm, 75 µm i.d., 3 µm, 100 Å), 1771 Pepmap-RSLC Proxeon C₁₈ column (50 cm, 75 µm i.d., 2 µm, 100 Å), 300 nL min-1 flow rate, 1772 a 98 min gradient from 95% solvent A (water, 0.1% FA) to 35% solvent B (99.9% ACN, 0.1% 1773 FA) for a total time of 2 h. Peptides were analyzed in the Orbitrap cell, at a resolution of 1774 120,000, with a mass range of m/z 350–1550. Fragments were obtained through high collision-1775 induced dissociation (HCD) activation with a collisional energy of 27%. Data were acquired in 1776 the Orbitrap cell in a Top20 mode, at a resolution of 17,500. For the identification step, all MS 1777 and MS/MS data were processed with an in-house Peaks software (BSI, version 6.0) to perform 1778 de novo sequencing. The mass tolerance was set to 10 ppm for precursor ions and 0.02 Da for 1779 fragments. The following modifications were allowed: oxidation (Met) and pyroglutamic acid 1780 (Glu). De novo peptide sequences with Average Local Confidence (ALC) higher than 60% were 1781 used for the peptide identifications.

- 1782
- 1783

2.4. Venom gland transcriptomics

Venom apparatus (venom glands and reservoir) of ant workers were dissected in a 1784 1785 Phosphate Buffered Saline solution (PBS) and immediately placed in 500 μ L of TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and store at -80°C prior to RNAs extraction. Given the small 1786 1787 size of Stenamma debile workers combined to the difficulty to collect workers in large numbers, 1788 the transcriptome database for this species was performed with the whole ant tissues 1789 (Supplementary Table II). Total RNAs were extracted with the RNeasy Micro Kit (Qiagen) 1790 following the manufacturer's instructions. Contaminating genomic DNA was removed using a 1791 DNA-free kit (Applied Biosystem) according to the manufacturer's instructions.

1792 RNA quantity and quality were assessed using a nanodrop and a bioanalyzer (Nanodrop 1793 2000, ThermoFisher Scientific; Agilent 2100 Bioanalyzer System). RNAseq was performed at 1794 the GeT-PlaGe core facility, INRA Toulouse, France. RNA-seq libraries were prepared 1795 according to Illumina's protocols using the Illumina TruSeq Stranded mRNA sample prep kit 1796 to analyze mRNA. Briefly, mRNA was selected using poly-T beads. Then, the RNA was 1797 fragmented to generate double stranded cDNA and adaptors were ligated to be sequenced. 1798 Eleven cycles of PCR were applied to amplify the libraries. Library quality was assessed using 1799 a Fragment Analyser, and the libraries were quantified through qPCR using the Kapa Library 1800Quantification Kit. RNA-seq experiments were performed on an Illumina HiSeq3000 using a1801paired-end read length of 2×150 pb with the Illumina HiSeq3000 sequencing kits.

1802

1803 *2.5. Bioinformatic tools*

1804

2.5.1. Contig quantification

1805 The read pairs were assembled twice with drap (version 1.9.1) (Cabau et al., 2017) using 1806 the de Bruijn graph assemblers called Oases and Trinity (parameters: -dbg oases/trinity). The 1807 assembly metrics were produced with the assemblathon stats.pl scripts. Raw reads were 1808 aligned on the contigs with bwa mem (version 0.7.12-r1039) (Heng Li & Durbin, 2010) using 1809 the default parameters and the alignment files were sorted, compressed, and indexed with 1810 samtools view, sort, and index (version: 1.3.1) using the default parameters (H. Li et al., 2009). 1811 The quantification files were generated with samtools idxstats (version: 1.3.1), giving us the 1812 length of each contig in base pairs along with the number of hits, corresponding to the number 1813 of sequences from RNAseq reads which aligned on a given contig. To calculate the expression 1814 rate of each contig, we calculated the transcripts per million value (TPM) by dividing the 1815 number of aligned reads for each contig by the contig length, then dividing this value by the 1816 ratio of counts to contig length for all contig. This value was then multiplied by 1 million to generate TPM. 1817

- 1818
- 1819

2.5.2. Precursors identifications and mature sequences

1820 RNAseq data were translated using a translate program command lines (emboss 1821 package, command line: transeq) in order to obtain the potential Open Reading Frames (ORFs). 1822 Then, the fragments of sequences obtained during the de novo Orbitrap mass spectrometry-1823 based sequencing were aligned against these data by using the command-line NCBI BLAST 1824 program (ncbi-blast-2.6.0+ package, command line: blastp, parameter: -matrix PAM30) with 1825 adapted parameters for short sequences, allowing us to find the complete peptide sequences and 1826 the name of the contigs on which they aligned. The masses of mature peptide sequences, 1827 obtained from these different approaches, were systematically verified using the peptide mass 1828 program from ExPASy portal (https://expasy.org) and compared to those obtained through 1829 mass spectrometry. Signal sequences and transmembrane domains were predicted with the 1830 phobius program available at http://phobius.sbc.su.se/. Sequence similarities were searched for 1831 using the NCBI BLAST program presented in the Uniprot server with the default parameters. 1832 Alignments were achieved using the Muscle program in Seaview version 4.6.1 (Gouy, 1833 Guindon, & Gascuel, 2010), and edited using BOXSHADE version 3.2 (https://embnet.vital-

1834 it.ch/software/BOX form.html).. Sequence identity and similarity percentages were calculated 1835 with the software infoalign from the EMBOSS suite of bioinformatic tools (Rice, Longden, & 1836 Bleasby, 2000). We also performed a Hierarchical Cluster Analysis (HCA) on signal sequences 1837 of myrmicitoxins identified in this study and those previously defined in myrmicine ant venom 1838 peptidomes (Touchard, Aili, et al., 2020; Touchard et al., 2018). Briefly, signal sequences were 1839 predicted with Signal 5.0 (Almagro Armenteros et al., 2019). Multiple alignments were then 1840 achieved with the ClustalW program and pairwise distances were computed using MEGAX 1841 version 10.1.7 with default parameters (Kumar, Stecher, Li, Knyaz, & Tamura, 2018). HCA 1842 was then performed using Ward's method with the R software (R Core Team, 2017).

1843

1844

2.5.3. Annotation of most expressed contigs

Open reading frames (≥100 amino-acids length), found by translating RNAseq data,
were extracted from the most abundant contigs and then submitted to the NCBI BLAST
program against the Uniprot refseq protein database on the computational cluster of the
Genotoul bioinformatic facility, INRA Toulouse, France (ncbi-blast-2.6.0 + package, command
line: blastp, parameter: -matrix BLOSUM62).

1850

1851 *2.6. Toxin nomenclature*

1852 Novel myrmicitoxin sequences were named following the standard nomenclature for 1853 animal venom peptides (G. F. King et al., 2008), and we used myrmicitoxin (MYRTX) to define 1854 the venom peptides from the subfamily Myrmicinae and genus/species descriptors as follow; 1855 Myrmica ruginodis (Mru), Pogonomyrmex californicus (Pc), Stenamma debile (Sd), Daceton 1856 armigerum (Da) and Tetramorium africanum (Ta) (Touchard, Aili, et al., 2016). In cases of 1857 sequence similarities, we also named the novel myrmicitoxins according to the same subscripts used to denote the 'unknown' activity descriptor prefixes previously defined for myrmicine ant 1858 1859 venom peptides (U₁-U₂₀), and forming mature myrmicitoxin families (Touchard, Aili, et al., 1860 2020; Touchard et al., 2018).

1861

1862 **3. Results**

1863 *3.1. Proteotranscriptomics data*

A preliminary LC-MS analysis was performed on an LCQ-ion trap Advantage mass spectrometer in order to establish the lists of the masses corresponding to peptides in each crude venom. Before sequence determination, each peptide detected was tentatively named based on the abbreviations specified in part *2.6*, followed by their molecular weight as described by

- Johnson et al. (Johnson et al., 2010). The fully sequenced peptides were then renamed in accordance with the nomenclature previously described in the part 2.6 (Figure 1). Although the venom peptides structured by disulfide bonds are less abundant within ant venoms than in marine snail, spider or scorpion venoms, some studies revealed the presence of venom peptides
- 1872 with one, two and three disulfide bonds (Aili et al., 2014; Pan & Hink, 2000). Consequently, a
- 1873 chemical reduction/alkylation was performed on every crude venom from this study, excepted
- 1874 Tetramorium africanum, Stenamma debile and Solenopsis saevissima, followed by a LC-MS
- 1875 analysis.

1877 Figure 1: Total ion chromatograms (TIC) of myrmicine ant crude venoms. Peptides were eluted through RP-

1878 HPLC on a C18 column using a linear H₂O/ACN gradient at a flow rate of 250 μL.min⁻¹.

1879

1880 A total of 155 masses corresponding to peptides were detected by LC-MS analysis in 1881 myrmicine ant venoms (Figure 2; Supplementary tables III-XIII). Tetramorium africanum 1882 venom exhibited the highest number of masses (i.e. 49), which were distributed relatively 1883 evenly between 1.84 and 46.24 min, ranging from 744 and 3,338 Da (Supplementary Table III 1884 - Figure 2). Stenamma debile venom exhibited a total of 20 masses eluting mostly between 1885 12.01 and 39.77 min. Most of them were lower than 2,500 Da, although three masses ranging 1886 from 3,000 to 3,200 Da were detected (Supplementary Table V – Figure 2). Myrmica ruginodis 1887 and Pogonomyrmex californicus venoms showed 39 and 34 masses corresponding to peptides, 1888 eluting from 2.28 to 44.61 min and from 11.77 to 51.62 min, respectively (Supplementary 1889 Tables IX and XI). Although most of the masses were comprised between 2,500 and 3,600 Da, 1890 several masses ranging from 4,000 and 6,086 Da were detected in those venoms (Figure 2).

1891 Solenopsis sp. venoms are known to be rich in alkaloids. We thus performed an hexanic 1892 extraction and the peptidic fraction was submitted to LC-MS analysis (Figure S1). Peptides 1893 were detected in S. saevissima venom, ranging from 2,361 to 4,979 Da and eluting from 21.91 1894 to 41.98 min. This venom was predominantly composed of alkaloids, with two masses (m/z1895 253.00-279.22) representing about 90% of the venom (Supplementary Table XIII – Figures 2 1896 and S1). Daceton armigerum venom exhibited six masses corresponding to peptides which 1897 were greater than 8,000 Da, eluting from 17.01 to 21.87 min (Supplementary Table VII - Figure 1898 2).

1901 Figure 2: Repartition of masses detected by LC-MS analysis in the six myrmicine ant venoms. The bottom 1902 and up end of each box represent the minimal and the maximal mass detected, respectively, while the line 1903 inside each box represents the mean mass. Each red point represents a detected mass.

- The LC-MS/MS analysis of the six crude venoms was then performed using a Q-exactive orbitrap mass in order to achieve *de novo* sequencing. This resulted in a total of 6,314 sequence tags with an ALC score higher or equal to 60%, ranging from 145 to 2,898 sequence tags for *S. debile* to *T. africanum* venoms, respectively.
- 1908 To characterize the myrmicitoxins, the mRNA transcriptome of venom glands was 1909 sequenced using an Illumina Hiseq, resulting in a total of 319,437,422 raw reads, ranging from 1910 19,389,866 to 82,055,072 for D. armigerum and T. africanum, respectively. De novo assembly 1911 with Trinity and Oases yielded a total of 181,237 and 102,277 contigs for all venoms, with a 1912 mean contig size of 1,880 and 2,174 bp, respectively. Both assembly methods gave various 1913 number of contigs for each venom glands transcriptome, ranging from 13,701 for D. armigerum 1914 (Oases) to 48,353 for S. debile (Trinity) (Supplementary table XIV). For each myrmicine ant, 1915 a combined database from both assemblies was used to search for peptide sequences generated 1916 from LC-MS/MS analyses. Additionally, the signal sequences of the previously identified 1917 myrmicitoxins were searched against transcriptomic databases in order to find peptides sharing

the same signal sequences. This permitted us to deduce that most of the venom peptide toxins have high transcription levels accounting from 16% to79% of the most expressed transcripts by the venom glands of *D. armigerum* and *T. africanum*, respectively (Supplementary Tables XV-XVIII). The mature myrmicitoxins sequences were verified manually using mass spectrometry data by matching theoretical masses with those measured. This approach permitted us to infer peptides.

1925 D. armigerum venom exhibited indeed a streamlined peptidome with 6 detected masses 1926 which were greater than 8,000 Da. Additionally, the transcriptomic data led to the identification 1927 of three transcripts encoding peptides with calculated masses ranging from 4,104 to 4,581 Da, 1928 and exhibiting only one cysteine (Supplementary table V). Several dimeric peptides have been 1929 observed in ant venoms, particularly for arboreal pseudomyrmecine ants (Barassé et al., 2019; 1930 Touchard et al., 2014; Touchard, Mendel, et al., 2020). Thus, we hypothesized that D. 1931 *armigerum* venom is composed of a complex of dimeric peptides, and that those transcripts 1932 encoded dimeric peptides subunits. Based on this hypothesis, we calculated the theoretical 1933 masses of the presumed homo/heterodimeric peptides from the three identified transcripts. Four 1934 calculated masses matched with those detected in the total ion chromatogram of the crude 1935 venom, corresponding to the peptides Da-8231, Da-8220, Da-8209 and Da-9161 (i.e. 1936 dimer BB, heterodimer AB, homodimers AA and CC, respectively) (Figure 3 – A). The 1937 reduction/alkylation of the crude venom followed by a LC-MS analysis allowed us to identify 1938 a total of five monomers, including those encoded by the three transcripts (i.e. -Da1a, -Da1b 1939 and -Da1c) (Figure 3 - B).

Figure 3: Identification of *Daceton armigerum* dimeric peptides. (A) Total ion chromatogram and MS
spectra of hypothesized dimeric peptides from the LC-MS analysis of *D. armigerum* crude venom. (B) Total
ion chromatogram and MS spectra from the LC-MS analysis of *D. armigerum* reduced/alkylated venom.

T. africanum, S. debile, P. californicus and *M. ruginodis* venoms were dominated by linear monomeric peptides. Those four venoms also exhibited disulfide-bonded peptides, with a majority containing one disulfide bond. Myrmicitoxins containing three disulfide bonds were also noted within *M. ruginodis* and *P. californicus* venoms (Figure 4).

Figure 4: Landscapes of myrmicine and pseudomyrmecine ant venoms. "*" indicates previously published
data, which were obtained with a similar methodology from (Barassé et al., 2019; Touchard, Aili, et al., 2020;
Touchard et al., 2018).

1953

1949

3.2. Molecular features of mature myrmicitoxins

1955 Here, the myrmicine ant venom peptidomes exhibited heterogeneous compositions, 1956 with some venoms displaying more mature toxin families than others. For instance, eighteen 1957 mature myrmicitoxin families were identified in T. africanum venom peptidome whereas D. armigerum venom peptides were gathered in a single family (Figure 5). Among the mature 1958 1959 myrmicitoxin families which were previously defined in Tetramorium bicarinatum and Manica rubida venoms (U₁-U₂₀) (Touchard, Aili, et al., 2020; Touchard et al., 2018), twelve were 1960 1961 observed in the different venoms of this study, ranging from one to nine for S. debile and T. africanum, respectively. Furthermore, we identified a total of seventeen new mature 1962 1963 myrmicitoxin families $(U_{21}-U_{37})$ (Figure 5).

1964 Several venom peptides exhibited post-translational modifications (PTMs) which are 1965 essential to their activity, such as C-terminal amidation, fucosylation or the formation of 1966 disulfide bonds. In the first place, we thus distinguished linear and disulfide-bonded peptides 1967 to expose the diversity contained in myrmicine ant venoms.

1968

Figure 5: Relative abundances of mature myrmicitoxin families found in myrmicine ant venom peptidomes.
"*" denotes previously described venom peptidomes, which were characterized with a similar methodology
from (Touchard et al., 2018).

1972

3.2.1. Linear myrmicitoxins

1973 Several mature myrmicitoxin families, such as M, U₁, U₁₄, U₂₄, U₂₅, U₂₆ and U₃₁, gather 1974 linear amphiphilic peptides which are polycationic, containing therefore several arginine and 1975 lysine residues (Figure 6 - A). Those short myrmicitoxins (i.e. 10-21 amino acids long) 1976 constitute a total of 37% of T. africanum venom peptidome, whereas they represent 1 to 3% of 1977 S. debile and M. ruginodis venoms, respectively (Figure 5). A linear amphiphilic neutral peptide was also identified in T. africanum venom (i.e. U₂), although it represents less than 1% of the 1978 venom peptidome (Figure 6 - A). Two families gather linear amphiphilic peptides from 24 to 1979 1980 31 amino acids long that exhibit a negative net charge (i.e. U₂₁ and U₂₉), due to the presence of 1981 aspartic and glutamic acids (Figure 6 - B). Those myrmicitoxins represent 17% and 28% of S. 1982 debile and T. africanum venom peptidomes, respectively.

Α	
M-MYRTX-Tb1a	KIKIPWGKVKDFLVGGMKAV [*]
M-MYRTX-Ta1a	-FKIPWGKIKDFVTGGIKEVAK [*]
U₁-MYRTX-Tb1a	LFKEIIEKIKAKL [*]
U₁-MYRTX-Ta1a	GLKEIWEKIKOKLGM
U₂-MYRTX-Tb1a	DPPPGFIGVR [*]
U₂-MYRTX-Ta1a	DPPGGFVGTR [*]
U ₁₄ -MYRTX-Tb1a U ₁₂ -MYRTX-Mri1b	IPPNAVKSLQ [*]

%ID	%S	Species
-	-	Tetramorium bicarinatum
62	76	Tetramorium africanum
%ID	%S	Species
-	-	Tetramorium bicarinatum
60	60	Tetramorium africanum
%ID	%S	Species
-	-	Tetramorium bicarinatum
70	80	Tetramorium africanum
%ID	%S	Species
-	-	Tetramorium bicarinatum
80	90	Manica rubida
60	70	Tetramorium africanum
60	70	Myrmica ruginodis
40	60	Manica rubida
40	60	Myrmica ruginodis
44	67	Myrmica ruginodis
43	57	Myrmica ruginodis
10	10	Murmioo ruginodio

B

U₂₄-MYRTX-Ta1a

U₂₅-MYRTX-Ta1a

U₂₆-MYRTX-Ta1a

U₂₁-MYRTX-Ta1a VVSMDDINKWAQEMLSKLNELMKQ-----U₂₁-MYRTX-Ta1b VVSMDDINKWAQEALSKLNEVMKQ-----U29-MYRTX-Sd1a ETTALATAEATPEATAEATPKATAKAYQPIY

U₃₆-MYRTX-Pc1a[{] VDKPGQAKEIGIFDRITELINWLVNH---U31-MYRTX-Sd1a ANIALEAANKMGPRIAEKLVEKLQ------

TOSKNPDVVIRL*-----

WRVPWRDIITKGSKMAYEMSKK------QLPTIFVPRL*-----

1983

1984 Figure 6: Linear cationic, neutral (A) and anionic (B) myrmicitoxins in Tetramorium africanum (Ta), 1985 Pogonomyrmex californicus (Pc) and Myrmica ruginodis (Mru) venoms. Myrmicitoxins identified in this 1986 study were compared to venom peptides from T. bicarinatum and M. rubida (Touchard, Aili, et al., 2020; 1987 Touchard et al., 2018), and are highlighted in bold. Percentage identity (%ID) and similarity (%S) are relative to the first peptide of each family. "[§]" denotes putative peptides. "*" denotes a C-terminal amidation. 1988 1989 Alignments were generated with the Muscle program in Seaview version 4.6.1 and edited using BOXSHADE 1990 version 3.2 (Gouy et al., 2010). Positively charged residues are surrounded in blue whereas negatively 1991 charged residues are surrounded in red.

1992 Most of the venoms of this study also contain polycationic peptides which are 1993 hydrophobic (Figure 7). For instance, the U_3 family is represented in every venom peptidome 1994 of this study, except in S. debile and D. armigerum venoms. This family is abundant in T. 1995 africanum and M. ruginodis venoms (ca 25%), and represents about 6% of P. californicus 1996 venom peptidome (Figure 5). Peptides from the U₃ family are cationic and share common 1997 biochemical features: a hydrophobic leucine-rich N-terminal region and charged residues in 1998 their C-terminal part. More peptides with similar distributions of hydrophobic and charged 1999amino acids are also observed in *P. californicus* (i.e. U_{33}) and *S. debile* (i.e. U_{28}) venom2000peptidomes (Figure 7 – A), accounting for 11 and 41% of their content, respectively (Figure 5).

Five more families gathering hydrophobic peptides were observed in myrmicine ant venoms (i.e. U_{10} , U_{13} , U_{30} , U_{34} and U_{37}), except in *D. armigerum*. Most of them are cationic, due to the presence of several lysine residues which are distributed all along the peptidic chain. Indeed, only U_{35} and U_{37} peptides, with several glutamic and aspartic acid residues, exhibit a negative net charge (Figure 7 – B). Those hydrophobic peptides are relatively abundant in *M. ruginodis*, *P. californicus* and *S. debile* venoms, as they account for a total of 67%, 68% and 7% of the venom peptidomes, respectively (Figure 5).

Α		
		*
	U₃-MYRTX-Tb1a	VLPALPLLAGLMSLPFLQHKLTN
	U ₃ -MYRTX-Mri1a	GLPLLALLMTLPFIQ <mark>H</mark> AITN [*]
	U ₃ -MYRTX-Mru1b	GLPLLALIMALPFLQHYIEKNV
	U₃-MYRTX-Mru1a	GLPLFALLMALPALQHYIEKKI
	U₃-MYRTX-Pc1g [≮]	GLPLLVFLFSLPAVQ <mark>H</mark> WI <mark>EK</mark> NWIN [^] -
	U ₃ -MYRTX-Pc1b	GLPILALFVLIPFI <mark>HH</mark> YLM <mark>EKW</mark> *
	U ₃ -MYRTX-Pc1d {	GLPILASFVLIPFI <mark>HH</mark> YLMEKW [*]
	U ₃ -MYRTX-Tb1b	IAPILALPLLGGMMSLPFLHHKLTGGKPHHE*
	U₃-MYRTX-Pc1a	ALPALPLLALLFSLPAVQHWIEKNWIN [*] -
	U₃-MYRTX-Ta1d	IAPILALPLLAGLFSLPFVHHWATGGKPHHE*
	U ₃ -MYRTX-Ta1a	LAPIFALLLLSGLFSLPALQ <mark>H</mark> YI <mark>EK</mark> NYIN [*] -
	U₃-MYRTX-Ta1b	<u>LAPIFALLLLSGLFSLPALQ<mark>H</mark>YV<mark>EK</mark>NYINŤ</u> -
	U₃-MYRTX-Pc1e [{]	ALPALPFLIFLFTLPAV <mark>QH</mark> WV <mark>EK</mark> NWIN ⁻ -
	U₃-MYRTX-Ta1c	IAPILALGLLSAFSAIPFIHHWATGGKPHHE*
	U ₃₃ -MYRTX-Pc1a	ISPLIPLISFLASLIAAI <mark>KS</mark> *
	U ₃₃ -MYRTX-Pc1b	ISPLISLISFLASLIAAI <mark>k</mark> s *

U₂₈-MYRTX-Sd1a QFPMDMLIAGAKKLFS *

%ID	%S	Species			
-	-	Tetramorium bicarinatum			
70	85	Manica rubida			
55	58	Myrmica ruginodis			
50	59	Myrmica ruginodis			
42	50	Pogonomyrmex californicus			
36	55	Pogonomyrmex californicus			
26	55	Pogonomyrmex californicus			
55	61	Tetramorium bicarinatum			
52	59	Pogonomyrmex californicus			
48	55	Tetramorium africanum			
45	55	Tetramorium africanum			
45	55	Tetramorium africanum			
41	52	Pogonomyrmex californicus			
29	45	Tetramorium africanum			

	-	

U₁₃-MYRT U₁₃-MYRT U₁₃-MYRT U₁₃-MYRT

U ₁₀ -MYRTX-Tb1a	GLGFLAKIMGKVGMRMIKKLVPEAAKVAVDQLSQQQ
U ₁₀ -MYRTX-Mru1a	GIGKILGKVALKILKVVAPAAAEAIADKI [*]
U ₁₀ -MYRTX-Mru1b	GIGKVLKNI-LSKLKKLLPL
U ₁₀ -MYRTX-Mru1c ^f	GIGNVLAKVALKILKVVAPSAAAAIADKI [*]
U ₁₀ -MYRTX-Mri1c	GVGSLLAKAALKILKIVAPAAAEVIANKI [*]
U ₁₀ -MYRTX-Mri1a	GFKSMLAKAALKILKAVAPAAAAAIADKI
U ₁₀ -MYRTX-Mri1b	GIKDALAKI-WKILKAEVPTVAAAIENKV [*]

%ID	%S	Species			
-	-	Tetramorium bicarinatum			
41	76	Myrmica ruginodis			
37	74	Myrmica ruginodis			
31	66	Myrmica ruginodis			
28	69	Manica rubida			
24	55	Manica rubida			
21	54	Manica rubida			

	*	%ID	%S	Species
X-Tb1a	RPPQIGIFDQIDKGMAAFMDLFK	-	-	Tetramorium bicarinatun
X-Ta1a∛	SKIGLFDQIDKGMAWFMDLFK	81	91	Tetramorium africanum
X-Mri1a	DKPGQAKKIGLFDQIDKAAAAFMKLFE	52	67	Manica rubida
X-Mru1a	DKFGQAKKIGLFDQIDRAWAWFMKLFE	44	63	Myrmica ruginodis

U ₃₀ -MYRTX-Sd1a	TISYLRGLLPLFQ
U ₃₄ -MYRTX-Pc1a	DSKIFRALITLGKMLLPVILPTVAEKIKEKV *
U₃₅-MYRTX-Pc1a U₃₅-MYRTX-Pc1b	VDFKEMMKKITPDLLEMIEDIKAKIQQ [*] - asvDikelikkitpdllemiddikakiqq
U ₃₇ -MYRTX-Mru1a	ADIAALIKELSEKAEEAIKKILGQE *

Figure 7: Hydrophobic myrmicitoxins and repartition of their charged amino acids. (A) The charged residues
are mainly located in the N-terminal region. (B) The charged residues are distributed all along the peptidic

- 2011 chain. Myrmicitoxins identified in this study were compared to venom peptides from *T. bicarinatum* and *M*.
- 2012 *rubida* (Touchard, Aili, et al., 2020; Touchard et al., 2018), and are highlighted in bold. Percentage identity
- 2013 (%ID) and similarity (%S) are relative to the first peptide of each family. " ξ " denotes putative peptides. "*"

denotes a C-terminal amidation. Alignments were generated with the Muscle program in Seaview version
4.6.1 and edited using BOXSHADE version 3.2 (Gouy et al., 2010). Positively charged residues are
surrounded in blue whereas negatively charged residues are surrounded in red. Hydrophobic residues are
surrounded in yellow.

2018 *3.2.2. Disulfide-bonded peptides*

2019 Seven families from *T. africanum* and *M. ruginodis* venoms gather peptides from 13 to 2020 34 amino acids long, containing one intrachain disulfide bond due to the presence of a pair of 2021 cysteines (i.e. U₄, U₆, U₇, U₁₁, U₂₂, U₂₃ and U₂₇). The most part also contain several arginine, 2022 lysine and histidine residues, and are therefore polycationic. Indeed, only U_{23} -MYRTX-Ta1a 2023 exhibits a negative net charge, due to several aspartic acid residues (Figure 8). The seven 2024 families of disulfide-bonded peptides are represented in T. africanum venom, each accounting for about 1% of the venom peptidome. However, only U_6 peptides were identified in M. 2025 2026 ruginodis venom, with a similar relative abundance (i.e. about 1%).

	·	%ID	%S	Species
U₄-MYRTX-Tb1a	GCSQFRRMRNLCG	-	-	Tetramorium bicarinatum
U₄-MYRTX-Ta1a [∛]	GCSVNRRRQGLCR ^T	54	62	Tetramorium africanum
		%ID	%S	Species
U ₆ -MYRTX-Tb1a	LWGKCPKIGGRRVMC	-	-	Tetramorium bicarinatum
U ₆ -MYRTX-Tb1b	LWGK <mark>C</mark> PKIGGRRIMC	93	100	Tetramorium bicarinatum
U ₆ -MYRTX-Ta1a	FHGPCPKIPGKIIKC	47	60	Tetramorium africanum
U ₆ -MYRTX-Mri1a	IIGPCPKKPIG-IVC	36	57	Manica rubida
U ₆ -MYRTX-Tb1c	FRGPCPKDMFKGRFIMC	47	53	Tetramorium bicarinatum
U ₆ -MYRTX-Mru1a	LIGPCPKKPIG-IKC	43	50	Myrmica ruginodis
U ₆ -MYRTX-Mru1b	IIDPCPKIFKG-LFC	36	50	Myrmica ruginodis
		%ID	%S	Species
U ₇ -MYRTX-Tb1a	AINCRRYPRHPKCRGVSA	-	-	Tetramorium bicarinatum
U ₇ -MYRTX-Ta1a	AINCRRFPFHPKCRGISA	83	94	Tetramorium africanum
U ₇ -MYRTX-Ta1b	DVNCEITPFHPKCRGVAP	56	67	Tetramorium africanum
		%ID	%S	Species
U₁₁-MYRTX-Tb1a	GKEKEKLKQCFKDMTLAAIDYAKHKVEKHLFKCI	-	-	Tetramorium bicarinatum
U ₁₁ -MYRTX-Ta1a	GKEKDKLIECTKEMLLAAMDYAKHKIEKHLFKCK	74	89	Tetramorium africanum

2027

Figure 8: Myrmicitoxins containing one disulfide bond. The venom peptides identified in this study were compared to myrmicitoxins from *T. bicarinatum* and *M. rubida* (Touchard, Aili, et al., 2020; Touchard et al., 2030 2018), and are highlighted in bold. Percentage identity (%ID) and similarity (%S) are relative to the first peptide of each family. " ξ " denotes putative peptides. " * " denotes C-terminal amidation. Alignments were generated with the Muscle program in Seaview version 4.6.1 and edited using BOXSHADE version 3.2 (Gouy et al., 2010). Cysteines are surrounded in yellow. Positively charged residues are surrounded in blue whereas negatively charged residues are surrounded in red.

2035 The U_{17} peptides constitute another family of peptides containing one disulfide bond. 2036 They are cationic, hydrophilic and from 23 to 32 amino acids long (Figure 9). Sharing similar 2037 mature sequences with secapins from hymenoptera venoms (Touchard et al., 2018), the consensus sequence of U_{17} peptides from myrmicine ant venoms is defined as 2038 XIIXXPXXXXNTCNPXGXXXXXGXCRXXXX. The U_{17} family is observed in every 2039 2040 venom of this study, except for *D. armigerum*, with relative abundances around 1% for *T.* 2041 africanum, P. californicus and M. ruginodis venom peptidomes. On the other hand, it represents 2042 12% of S. debile venom (Figure 5). Several U_{17} peptides begin with the pattern 'HII-' and 2043 couldn't be validated in proteomics, in particular those inferred from *M. ruginodis* venom gland 2044 transcriptome. Indeed, the calculated masses systematically exhibit a missing 26 Da mass unit in comparison with the MS measurements. The same missing mass unit is observed for U₁₇ 2045 peptides from P. californicus venom, also beginning with a histidine. Although their calculated 2046 2047 masses were validated by proteomics data, each of them is also followed by a mass corresponding to an addition of 26 Da in a close retention time (Supplementary table VII), 2048 2049 suggesting a PTM resulting in the gain of a 26 Da.

		%ID	%S	Species
U ₁₇ -MYRTX-Tb1a	TIINAPNRCPPGH-VVVKGRCRIA [*]	-	-	Tetramorium bicarinatum
U ₁₇ -MYRTX-Ta1b	YIIRVPIOCPPGK-VKVGNRCRIVY	54	58	Tetramorium africanum
U ₁₇ -MYRTX-Tb1c	TIIDVPIOCPPGK-VKVGNRCRVIF	54	67	Tetramorium bicarinatum
U ₁₇ -MYRTX-Mru1c f	HIINVPIOCPPGK-VRVGNRCRDVGRV	50	54	Tetramorium africanum
U ₁₇ -MYRTX-Ta1a	GIINAPDRCPDGY-KRAGNOCRKVI [*]	46	58	Tetramorium africanum
U ₁₇ -MYRTX-Ta1d	SVINVPIOCPPGT-IOVGKRCRETF	46	63	Myrmica ruginodis
U ₁₇ -MYRTX-Mru1b <		44	48	Myrmica ruginodis
U ₄₇ -MYRTX-Mru1f <	HIIVVPERPPKCPPCOERDRRCPCPMVP	43	50	Myrmica ruginodis
U ₄₇ -MYRTX-Mru1a		42	50	Myrmica ruginodis
ILMYRTX-Mru1d {		42	46	Tetramorium bicarinatum
UMYRTX-Th1h		42	63	Manica rubida
		41	50	Manica rubida
	HIIVAPCREGY-VMVGNYCVEEY	41	50	Tetramorium bicarinatum
	YIIVAPCREGY-VMVGNYCVEEY	41	44	Myrmica ruginodis
U ₁₇ -MYRIX-Ible	NIIKAPLFPCPNGYIRDYKGDCREIIE	41	52	Stenamma debile
U ₁₇ -MYRIX-Sd1b	YIIDAPSRK <mark>C</mark> PEGSRRSTQGE <mark>C</mark> RTTSR	41	44	Myrmica ruginodis
U ₁₇ -MYRTX-Mru1g ^c	HIIVVPELQ <mark>C</mark> PPGQKRDRQGR <mark>C</mark> RKVFN	40	40	Myrmica ruginodis
U ₁₇ -MYRTX-Mru1h <	HIIVLPNRNTTNT <mark>C</mark> PPGQKKDNYGN <mark>C</mark> RKIA- <u>-</u>	39	52	Tetramorium bicarinatum
U ₁₇ -MYRTX-Tb1h	HIIRVP <mark>C</mark> RAGY-KEIRGR <mark>C</mark> RKILT [39	48	Tetramorium bicarinatum
U ₁₇ -MYRTX-Tb1d	NIIRVPCRAGY-IEVNGVCREVFT ⁻	38	42	Myrmica ruginodis
U ₁₇ -MYRTX-Mru1e ^{<}	HIIVIDKN <mark>C</mark> PPGQREDHHGH <mark>C</mark> RVI	38	41	Myrmica ruginodis
U ₁₇ -MYRTX-Pc1a	HIIQVPCLPGY-VKVGKDGVCREAFKFKPGQRP*	37	44	Pogonomyrmex californicus
U ₁₇ -MYRTX-Sd1a	NIITVPERPCPSGORKDSRGKCROVLS	36	41	Stenamma debile
U ₁₇ -MYRTX-Pc1c	HIIOVPCRDGY-VKDNGACIPEY	36	43	Pogonomyrmex californicus
U₁ ₇ -MYRTX-Pc1b	HITOVPCRDGY-VMVNGVCREVENEKDEE	35	44	Pogonomyrmex californicus
U ₁₇ -MYRTX-Ta1e [₹]		33	37	Tetramorium africanum
U ₄ MYRTX-Ta1c	GITRIPELKCPDGYKKDALGVCREIFT*	33	41	Tetramorium africanum
UMYRTX-Th1f	NITRUBEROCONCYREDANCECPEVEN*	29	33	Tetramorium bicarinatum
UMYRTX-Mri1b		28	44	Manica rubida
U MYRTX-Th1a		54	58	Tetramorium bicarinatum

Figure 9: Mature myrmicitoxins of the U_{17} family. Myrmicitoxins identified in this study were compared to U₁₇ venom peptides from *T. bicarinatum* and *M. rubida* (Touchard, Aili, et al., 2020; Touchard et al., 2018), and are highlighted in bold. Percentage identity (%ID) and similarity (%S) are relative to the first peptide. " ξ " denotes putative peptides. "*" denotes C-terminal amidations. Alignments were generated with the Muscle program in Seaview version 4.6.1 and edited using BOXSHADE version 3.2 (Gouy et al., 2010). Cysteines are surrounded in yellow.

2057 Six myrmicitoxins containing three disulfide bonds were identified in P. californicus and *M. ruginodis* venoms, accounting for less than 1% of each venom peptidome (i.e. U_{18}) (Figure 2058 2059 5). They also were predicted by ScanProsite to have an EGF-like domain (Epidermal Growth 2060 Factor), a specific structural domain for animal venoms which was only observed in the venoms 2061 of sea anemones and in M. rubida venom until now (Madio, Undheim, & King, 2017; Touchard, 2062 Aili, et al., 2020). Furthermore, the toxin U_{18} -MYRTX-Mru1b exhibited a missing 146 Da mass 2063 unit in its calculated mass, corresponding to an additional fucose glycan (Supplementary Table 2064 XII – Figure 10) and in accordance with the presence of the consensus site observed in its primary sequence -C₂XXXXS/TC₃-. 2065

2066

EGF-like domains

Figure 10: EGF-like myrmicitoxins (i.e. U_{18}). " ξ " denotes putative peptides. Myrmicitoxins identified in this study were compared to U_{18} venom peptides from *M. rubida* (Touchard, Aili, et al., 2020), and are highlighted in bold. Percentage identity (%ID) and similarity (%S) are relative to the first peptide. Alignments were generated with the Muscle program in Seaview version 4.6.1 (Gouy et al., 2010), and edited using BOXSHADE version 3.2. Conserved residues are highlighted in cyan, identical residues are highlighted in magenta and similar residues are highlighted in blue. The threonine residues which are modified by the addition of a fucose are surrounded in red.

The last mature myrmicitoxin family groups the dimeric peptides of *D. armigerum* venom. These amphiphilic and polycationic dimers are gathered in a single family (i.e. U₃₂) accounting for 84% of the venom peptidome (Figure 5). The chains composing those toxins are from 37 to 41 amino acids long and contain one cysteine allowing the formation of an interchain disulfide bond. They possess very similar sequences with a mean of 78% sequence identity (Figure 11). However, they display no similarity with previously reported venom peptides.

			%ID	%S	Species
	U ₃₂ -MYRTX-Da1a	GKEKEAFKAQLKECVKAGAKYLSHKVSKALYALIDKI	-	-	Daceton armigerum
2001	U ₃₂ -MYRTX-Da1b U ₃₂ -MYRTX-Da1c	GK <mark>EKE</mark> AFKAQLRECVKAGAKYLSHKLSKAMNALIDKI GKNKEALKAQLKECVKAVEKYIT <mark>D</mark> KISKKVLQAINALI <mark>D</mark> KI	89	97	Daceton armigerum
			66	76	Daceton armigerum
2081					

Figure 11: Peptidic chains of dimeric toxins from *D. armigerum* venom. Percentage identity (%ID) and similarity (%S) are relative to the first peptide of each family. Alignments were generated with the Muscle program in Seaview version 4.6.1 (Gouy et al., 2010), and edited using BOXSHADE version 3.2. Cysteines are surrounded in yellow. Positively charged residues are surrounded in blue whereas negatively chargedresidues are surrounded in red.

2087

2088

3.3. Superfamilies of myrmicitoxins precursors

2089 In order to determine to which superfamily of precursors each myrmicitoxin belongs, a 2090 Hierarchical Cluster Analysis (HCA) based on a total of 118 signal sequences was performed. 2091 This permitted us to define eight groups (Figure 12). As we included *T. bicarinatum* and *M.* rubida signal sequences in the analysis (Touchard, Aili, et al., 2020; Touchard et al., 2018), we 2092 2093 initially named the clusters according to the superfamilies of precursors previously defined in these ant venom peptidomes which were based on prepropeptide regions (i.e. A₁, A₂, B₁, B₂ 2094 2095 and C) (Touchard, Aili, et al., 2020; Touchard et al., 2018). The focus on signal sequences, and 2096 the addition of new myrmicitoxin precursors led to the division of superfamilies A and C into 2097 four additional superfamilies (i.e. A₃, A₄, C₁ and C₂) (Figure 12).

2108 *3.3.1. Superfamily A*¹

2109 The superfamily A₁ was represented in every myrmicine ant venom studied so far 2110 (Touchard, Aili, et al., 2020; Touchard et al., 2018), except for *D. armigerum*. The superfamily 2111 A₁ was made up of 25 signal sequences, reflecting fifteen mature myrmicitoxin families (i.e. 2112 M, U₁, U₄, U₅, U₇, U₈, U₉, U₁₀, U₂₂, U₂₃, U₂₅, U₂₇, U₂₈, U₃₁ and U₃₄). The signal sequences 2113 defined 28 amino acids long a consensus sequence: 2114 MXLSXLSLAXAIIFVMXIXYAPQVXARA (Figures 12 and 13), and shared from 54 (i.e. M-2115 MYRTX-Tb1a) to 73% (i.e. U₈ and U₉-MYRTX-Tb1a) sequence identity with it. The signal sequences of U₃₄-MYRTX-Pc1a and U₁₀-MYRTX-Tb1a were more dissimilar as they shared 2116 39 and 42% sequence identity with the consensus sequence, respectively. 2117

Most of the superfamily A₁ propeptides bore the consensus motif KAXADADADA with an additional C-terminal extension which alanine-rich (from 0 to 22 amino acids). The mature parts had quite divergent primary sequences with no strictly conserved features (Figure 13).

Superfamily A₁

2122

2123 Figure 13: Superfamily A_1 of myrmicitoxins precursors. The myrmicitoxin precursors identified in this study 2124 were compared to those observed in T. bicarinatum and M. rubida venom peptidomes (Touchard, Aili, et al., 2020; Touchard et al., 2018), and are highlighted in bold. "5" denotes putative peptides. Alignments were 2125 2126 generated with the Muscle program in Seaview version 4.6.1(Gouy et al., 2010), and edited using 2127 BOXSHADE version 3.2. Conserved residues are highlighted in cyan, identical residues are highlighted in 2128 magenta and similar residues are highlighted in blue. Black lines indicate signal sequences whereas black 2129 triangles indicate the cleavage site releasing the mature peptides. Signal, propeptide and mature sequences 2130 were aligned separately.

2131 *3.3.2. Superfamily A*²

As observed for the superfamily A_1 , the superfamily A_2 was identified in every myrmicine ant venom studied until now (Touchard, Aili, et al., 2020; Touchard et al., 2018), except for *D. armigerum* (Figure 12), and gathered 18 signal sequences, representing four

- mature myrmicitoxin families (i.e. U₂, U₃, U₃₀ and U₃₃). They shared from 65 (i.e. U₃-MYRTXPc1b) to 82% (i.e. U₂-MYRTX-Ta1a) sequence identity with the consensus sequence:
 MXXPKFLFIAVIXXGLSGSLTWA (i.e. 23 amino acids long) (Figures 12 and 14).
- The majority of the superfamily A_2 propertides showed the motif XPLAXX in their Nterminal part, coupled with the pattern AXAXAEAXAXAXAEAXAEAXXEA in their Cterminal part. Consequently, the propertides regions were quite long, as they contained 27 to 62 amino acids. Most of the precursor mature parts show similar sequences, as expected by the gathering of the whole U₃ family (Figure 14). However, the precursors encoding distinct mature myrmicitoxin families did not show sequence similarity.

Superfamily A₂

2144

2145 Figure 14: Superfamily A_2 of myrmicitoxins precursors. The myrmicitoxin precursors identified in this study 2146 were compared to those observed in T. bicarinatum and M. rubida venom peptidomes (Touchard, Aili, et al., 2147 2020; Touchard et al., 2018), and are highlighted in bold. "[§] " denotes putative peptides. Alignments were 2148 generated with the Muscle program in Seaview version 4.6.1 (Gouy et al., 2010), and edited using 2149 BOXSHADE version 3.2. Conserved residues are highlighted in cyan, identical residues are highlighted in 2150 magenta and similar residues are highlighted in blue. Black lines indicate signal sequences whereas black 2151 triangles indicate the cleavage site releasing the mature peptides. Signal, propeptide and mature sequences 2152 were aligned separately.

2153

2154 *3.3.3. Superfamily A*³

The superfamily A_3 was redefined here as it gathered the U_6 venom peptide precursors. 2155 2156 In the studies of *T. bicarinatum* and *M. rubida* venom peptidomes, the most part was previously 2157 classified in the superfamily A₁, except for U₆-MYRTX-Tb1c who was classified in the 2158 superfamily A₃ (Touchard, Aili, et al., 2020; Touchard et al., 2018). Here, the superfamily A₃ 2159 included the U₆ precursors of T. bicarinatum, M. rubida and M. ruginodis venoms. The 2160 consensus signal sequence was 27 amino acids long and was defined as 2161 MNPXALCXFLLATXXXLTITIXPXVXA (Figures 12 and 16), with which the precursors shared from 52 (i.e. U₆-MYRTX-Tb1a) to 70% (i.e. U₆-MYRTX-Mru1b) sequence identity. 2162

- The propeptide sequences were 8 amino acids long and were very conserved, following the consensus sequence NAEAXADA, except for the propeptide U_6 -MYRTX-Tb1c which was 6 amino acids long (Figure 15).
- 2166

Superfamily A₃

			_					_
U ₆ -MYRTX-Mri1a	MNPKALC	SFLLA <mark>T</mark> F	LLTVT	IMPSVH-	NAE <mark>ANAD</mark> A	I GPCPKK	[P <mark>IG</mark>]	<u>ev</u> c
U ₆ -MYRTX-Mru1a	M <mark>NPKA</mark> LC	<mark>sf</mark> lla <mark>t</mark> f	LLTV <mark>T</mark> :	ITPLVRA	NAE <mark>ANAD</mark> A	LIGPCPKK	P <mark>IG</mark> <mark>]</mark>	I K C
U ₆ -MYRTX-Mru1b	M <mark>NPKA</mark> LC	<mark>sf</mark> lla <mark>t</mark> f	LLLT <mark>IT</mark> :	IT <mark>PSV</mark> R <mark>A</mark>	NAE <mark>ANAD</mark> A	IIDPCPKI	FK <mark>G</mark> <mark>1</mark>	FC
U ₆ -MYRTX-Tb1c	ML-QALC	FS <mark>LLA</mark> TI	VTLT <mark>I</mark> I:	IMPAAY <mark>A</mark>	NAEP <mark>E</mark> A	FR <mark>GPCPK</mark> D	MFK <mark>GR</mark> F	<mark>I M</mark> C
U ₆ -MYRTX-Tb1a	MLQQHLV	V <mark>F</mark> LLA <mark>V</mark> I	VTLT <mark>IT</mark> :	I <mark>V P TVHA</mark>	NAE <mark>A</mark> D <mark>AD</mark> A	LWGKCPK-	- <mark>IGGR</mark> R	<mark>7M</mark> C
U ₆ -MYRTX-Tb1b	M <mark>np</mark> tt <mark>l</mark> C	C <mark>FLLA</mark> VI	VTLT <mark>IT</mark> :	I <mark>V P TVHA</mark>	NAE <mark>A</mark> D <mark>AD</mark> A	LW <mark>G</mark> KCPK-	- <mark>IGGR</mark> R <mark>I</mark>	<mark>I M</mark> C

2167

2168 Figure 15: Superfamily A₃ of myrmicitoxins precursors. The myrmicitoxin precursors identified in this study 2169 were compared to those observed in T. bicarinatum and M. rubida venom peptidomes (Touchard, Aili, et al., 2020; Touchard et al., 2018), and are highlighted in bold. "[§] " denotes putative peptides. Alignments were 2170 2171 generated with the Muscle program in Seaview version 4.6.1 (Gouy et al., 2010), and edited using 2172 BOXSHADE version 3.2. Conserved residues are highlighted in cyan, identical residues are highlighted in 2173 magenta and similar residues are highlighted in blue. Black lines indicate signal sequences whereas black 2174 triangles indicate the cleavage site releasing the mature peptides. Signal, propeptide and mature sequences 2175 were aligned separately.

2176 3.3.4.

3.3.4. Superfamily A₄

2177 The superfamily A₄ was defined as it gathered previous members belonging to the 2178 superfamilies "A₁ and A₂" identified in T. bicarinatum and M. rubida venoms (i.e. U_{11} -2179 MYRTX-Tb1a and U₂₀-MYRTX-Mri1a) (Touchard, Aili, et al., 2020; Touchard et al., 2018). 2180 This superfamily was represented in every myrmicine ant venom and included 11 signal 2181 sequences, which defined а 24 amino acids long consensus sequence, 2182 MKXXIXLFXXXAXXVAIIIPXING. Seven mature myrmicitoxin families (i.e. U₁₁, U₂₀, U₂₁, U₂₉, U₃₂, U₃₅ and U₃₇) and the signal sequences shared from 50 (i.e U₂₁) to 65 % (i.e. U₂₉-2183 2184 MYRTX-Sd1a) sequence identity with the consensus sequence. The propeptide regions were alanine-rich and exhibited various length, ranging from 7 to 68 amino acids, for U₃₅-MYRTX-2185 Pc1a and U₁₁ peptides, respectively. The mature sequences exhibited quite divergent sequences 2186 2187 with no strictly conserved features (Figure 16).

Superfamily A₄

2188

2189 Figure 16: Superfamily A4 of myrmicitoxins precursors. The myrmicitoxin precursors identified in this study 2190 were compared to those observed in T. bicarinatum and M. rubida venom peptidomes (Touchard, Aili, et al., 2020; Touchard et al., 2018), and are highlighted in bold. "5" denotes putative peptides. Alignments were 2191 2192 generated with the Muscle program in Seaview version 4.6.1 (Gouy et al., 2010), and edited using 2193 BOXSHADE version 3.2. Conserved residues are highlighted in cyan, identical residues are highlighted in 2194 magenta and similar residues are highlighted in blue. Black lines indicate signal sequences whereas black 2195 triangles indicate the cleavage site releasing the mature peptides. Signal, propeptide and mature sequences 2196 were aligned separately.

- 2197
- 2198

3.3.5. Superfamilies B

The superfamilies B_1 and B_2 were previously described in *T. bicarinatum* and *M. rubida* venom peptidomes in which they exhibited a total of five (i.e. U_{12} , U_{14} , U_{15} , U_{19} and U_{20} -MYRTX-Tb1a) and two (i.e. U_{13} and U_{16}) mature myrmicitoxin families, respectively (Touchard, Aili, et al., 2020; Touchard et al., 2018). In our study, those superfamilies were grouped in distinct clusters, in accordance with the previous definitions (Touchard, Aili, et al., 2020; Touchard et al., 2018).

2205 The U₁₄ precursors identified in *M. ruginodis* and *T. africanum* venom peptidomes were 2206 gathered with their counterparts in the superfamily B_1 , as were U_{24} and U_{26} precursors from T. africanum venom. Thus, the superfamily B₁ gathered a total of 17 signal sequences, defining a 2207 2208 23 amino acids long consensus sequences MKXIXLITIFAMIXTLMVTVXXG, with which 2209 they shared from 57 (i.e. U₁₄-MYRTX-Ta1a) to 78% (i.e. U₁₂- and U₁₉-MYRTX-Mri1a) sequence identity (Figures 12 et 17). Those precursors exhibited short propeptide regions from 2210 2211 4 to 2 amino acids long. Similarly to what has been observed for the superfamily A₃, the 2212 precursors encoding distinct mature myrmicitoxin families did not show sequence similarity.

The U_{13} precursors observed in *M. ruginodis* and *T. africanum* venom peptidomes were clustered in the superfamily B_2 , as was the U_{36} precursor from *P. californicus* venom. Therefore, this superfamily contained 6 signal sequences, forming the consensus sequence MKIIYXFLLVAVVAXTMXPGIMG (i.e. 23 amino acids long), with which they shared from 70 to 74% sequence identity (Figure 12). Most of the propeptide regions were from 6 to 13

- amino acids long and exhibited the conserved motif EAXXAEA. As for the mature parts of
- these precursors, they all exhibited the conserved pattern IGXF in their N-terminal region,although they belong to three distinct mature myrmicitoxin families (Figure 17).

Superfamily B₁

Superfamily B₂

U₁₃-MYRTX-Ta1a	MKIIYVFLLVATAAVTMIPGIMG EAEAEAESEHGKASKIGLFDQIDKGMAWFMD	FK
U ₁₃ -MYRTX-Tb1a	MK <mark>IIYIFSLVAVVIVTMIPGIMG</mark> EAEAEGPPPQ <mark>IGIFDQIDKGMA</mark> AFMDI	FK
U ₁₆ -MYRTX-Tb1a	MKLIYIFLLVAVIAVTMIPGIMG EA GDEAGK-PKIGVFHDVNKAIEWLLK	2Τ <mark>κ</mark>
U ₃₆ -MYRTX-Pc1a	MKTIYAFLLIAVVAF-MGSGIMA EPLAEAIA VDKPGQAKEIGIFDRITELINWLVNI	1
U ₁₃ -MYRTX-Mri1a	MKIIHVLLLVAVVAITMSPSIMA ESVAEA DKPGQAKKIGLFDQIDKAAAAFMKI	<mark>. F</mark> E
U ₁₃ -MYRTX-Mru1a	MKIIHVLLLVAVVAIAMSPGIMA ESAAEA DKFGQAKKIGLFDQIDRAWAWFMKI	<mark>. F</mark> E
		_

2221

2222 Figure 17: Superfamilies B of myrmicitoxins precursors. The myrmicitoxin precursors identified in this 2223 study were compared to those observed in T. bicarinatum and M. rubida venom peptidomes (Touchard, Aili, 2224 et al., 2020; Touchard et al., 2018), and are highlighted in bold. " ξ " denotes putative peptides. Alignments 2225 were generated with the Muscle program in Seaview version 4.6.1 (Gouy et al., 2010), and edited using 2226 BOXSHADE version 3.2. Conserved residues are highlighted in cyan, identical residues are highlighted in 2227 magenta and similar residues are highlighted in blue. Black lines indicate signal sequences whereas black 2228 triangles indicate the cleavage site releasing the mature peptides. Signal, propeptide and mature sequences 2229 were aligned separately.

2230

2231 3.3.6. Superfamilies C

A single superfamily C was previously defined in *T. bicarinatum* and *M. rubida* venom peptidomes, containing both U_{17} and U_{18} peptides (Touchard, Aili, et al., 2020; Touchard et al., 2018). The HCA allowed us to distinguish two separate clusters gathering those mature myrmicitoxins families, respectively (Figure 12). The superfamily C₁ grouped the 28 signal sequences of U_{17} precursors and was represented in every myrmicine ant venom peptidome,

2237 except for D. armigerum (Figure 17). The signal sequences shared from 52 (i.e. U₁₇-MYRTX-2238 Pc1a) to 71% (i.e. U₁₇-MYRTX-Mru1b, -Mru1c, -Sd1a, -Sd1b) sequence identity with the 2239 defined consensus sequence of 33 amino acids long: MEXNRTSTFXXYLXXXFLLISTFITMVXTESEA. The superfamily C₂ gathered 7 signal 2240 2241 sequences of U₁₈ precursors from P. californicus, M. ruginodis and M. rubida venom 2242 peptidomes (Touchard, Aili, et al., 2020) (Figure 17). The signal sequences shared from 52 (i.e. 2243 U18-MYRTX-Pc1A, -Pc1b) to 94% (i.e. U₁₈-MYRTX-Mri1a) sequence identity with the 2244 consensus sequence MKNNYNRXNTFIXYLMVTFSLISIISITECTP, which is 32 amino acids 2245 long. For both of these superfamilies, the signal sequences were not followed by any propertide 2246 regions.

Superfamily C₁

2248 Figure 18: Superfamilies C of myrmicitoxins precursors. The myrmicitoxin precursors identified in this 2249 study were compared to those observed in T. bicarinatum and M. rubida venom peptidomes (Touchard, Aili, 2250 et al., 2020; Touchard et al., 2018), and are highlighted in bold. "5" denotes putative peptides. Alignments 2251 were generated with the Muscle program in Seaview version 4.6.1 (Gouy et al., 2010), and edited using 2252 BOXSHADE version 3.2. Conserved residues are highlighted in cyan, identical residues are highlighted in 2253 magenta and similar residues are highlighted in blue. Black lines indicate signal sequences whereas black 2254 triangles indicate the cleavage site releasing the mature peptides. Signal, propeptide and mature sequences 2255 were aligned separately.

2256

2257 4. Discussion

2258 In this study, we identified a total of 78 myrmicitoxins precursors, which were classified 2259 into 37 families according to their mature sequences, and into 8 superfamilies based on their 2260 signal sequences. The characterized venom peptidomes showed a wide heterogeneity in their peptidic compositions, with some exhibiting more diversity than others. For instance, T. 2261 2262 africanum venom shows the highest number of mature toxin families of this study. Similarly to 2263 the toxins observed in the predatory ant T. bicarinatum venom (Touchard et al., 2018), the 2264 majority of those families gather amphiphilic cationic linear peptides and some contain toxins structured by one disulfide bond. Furthermore, T. africanum venom peptidome exhibited 2265 2266 several peptides which were analogous to those described in T. bicarinatum venom, such as M-2267 MYRTX-Ta1a and U1-MYRTX-Ta1a (i.e. Bicarinaline and P17 in T. bicarinatum venom peptidome, respectively) (Touchard et al., 2018). Bicarinaline and P17 are both linear, 2268 2269 polycationic and α -helicoidal peptides. They possess similar sequences and yet display distinct 2270 biological activities. Indeed, Bicarinaline exerts a cytolytic action while P17 exhibits an 2271 immunomodulatory activity through the activation of a GPCR (i.e. MRGPRX2) (Benmoussa 2272 et al., 2017; Duraisamy et al., 2020; Téné et al., 2016), therefore illustrating that similar toxins 2273 in terms of primary sequences can display very different functions. T. africanum venom 2274 peptidome also exhibited several analogues of disulfide-bonded peptides from T. bicarinatum 2275 venom (i.e. U_6 , U_7 and U_{11}), whose biological activities remain to be determined. However, as 2276 the presence of a disulfide bond induces a folding as well as more stability, we hypothesize that 2277 myrmicine ant venom peptides exhibiting this scaffold might specifically interact with one or 2278 several receptors. These results highlight the multifunctionality of venoms and peptidic toxins 2279 composing them.

2280 P. californicus, S. debile and M. ruginodis venom peptidomes also show a majority of linear 2281 peptide families and disulfide-bonded toxins, but exhibit much less myrmicitoxin families than 2282 T. africanum and T. bicarinatum venoms, similarly to M. rubida venom peptidome (Touchard, 2283 Aili, et al., 2020; Touchard et al., 2018). Interestingly, the studied ants from the genus 2284 Tetramorium use their venoms both for defense and prey capture whereas P. californicus, M. 2285 ruginodis and M. rubida use predominantly their venom for defense. Furthermore, the toxin 2286 arsenals of P. californicus and M. ruginodis are also composed of toxins containing three 2287 disulfide bonds which are part of the U₁₈ family. This family has also been described in Manica 2288 rubida venom peptidome (Touchard, Aili, et al., 2020), and seem thus to have been retained in 2289 several ant venoms. It was suggested that these peptides might be involved in the renewal of 2290 both the venom gland and the sac epithelia (Touchard, Aili, et al., 2020), but this remains to be 2291 demonstrated.

2292 In the same line, several families of mature myrmicitoxins have been observed in most of 2293 the myrmicine ant venom characterized until now. One of the most striking examples is the family U₃, which was abundant in T. africanum, P. californicus and M. ruginodis venom 2294 2295 peptidomes. Those peptides were previously described in *T. bicarinatum* and *M. rubida* venom 2296 peptidomes (Touchard, Aili, et al., 2020; Touchard et al., 2018) and were shown to share 2297 sequence similarities with the δ -PPONTX-Pc1a from *Paraponera clavata* (Aili et al., 2020; 2298 Touchard et al., 2018). This toxin is known to inhibit voltage-activated sodium channels 2299 (Na_v1.7), inducing an insecticidal effect as well as pain to vertebrates (Johnson et al., 2017; Piek, Hue, et al., 1991). Concerning U₃ peptides from myrmicine ant venoms, only U₃-2300 2301 MYRTX-Mri1a from *M. rubida* was tested and showed no insecticidal activity (Touchard, Aili, 2302 et al., 2020), illustrating once again that venom peptides showing similar biochemical features 2303 do not necessarily display the exact same activity. This was also demonstrated for 2304 paraponeratoxins isolated from different populations of *P. clavata*. The analogue peptides only 2305 differed in their primary sequences of one amino acid in their C-terminal part, and mediated 2306 Nav1.7 channels with different potencies (Johnson et al., 2017). In our study, U₃ peptides were 2307 not observed in D. armigerum and S. debile venoms, which both are essentially used to capture preys. Given their relative abundances in myrmicine ant venoms, with dual or essentially 2308 2309 defensive uses, and the biological activities showed by similar toxins, U₃ peptides presumably 2310 have an important functional role for defense against vertebrates. Disulfide bonded-peptides 2311 from the U₁₇ family also seem to be essential components of myrmicine ant venoms. Indeed, this family has been found in every myrmicine ant venom peptidomes (Touchard, Aili, et al., 2312 2313 2020; Touchard et al., 2018), including those from this study, except for D. armigerum. The 2314 U_{17} mature peptides were previously shown to share significant sequence identity with secapins 2315 (Touchard et al., 2018), which are multifunctional peptides found in the venom of numerous 2316 hymenoptera (Lee et al., 2016). However, the biological activity of U_{17} peptides from 2317 myrmicine ant venoms has not been determined yet. Several U_{17} peptides from *T. bicarinatum* 2318 and M. rubida venoms showed PTMs such as O-glycosylation and N-ter pyroglutamate 2319 modification (Touchard, Aili, et al., 2020; Touchard et al., 2018). In our study, several U₁₇ 2320 peptides from P. californicus and M. ruginodis venoms showed a histidine in their N-terminal 2321 part with the transcriptomics data, and systematically possessed a missing 26 Da mass unit in 2322 their calculated mass. The calculated masses remained undetected in proteomics data for U₁₇ 2323 peptides from *M. ruginodis* venom. However, both forms were detected for those identified in P. californicus venom peptidome, with similar relative abundances. A comparable observation 2324 2325 was noted in the venom of *M. rubida*. Indeed, only U₁₇-MYRTX-Mri1a, with a N-terminal

histidine, was visible in transcriptomics data while MS/MS data replaced the N-terminal histidine by a tyrosine (i.e. U_{17} -MYRTX-Mri1c). The exact mass difference between the two residues is 26 Da and only the N-terminal tyrosine form was confirmed by proteomics data in *M. rubida* venom (Touchard, Aili, et al., 2020). Further investigation is therefore needed to determine if we highlighted a new PTM leading to a gain of 26 Da or if this phenomenon is artefactual.

2332 Here, we also demonstrate for the first time the presence of dimeric peptides in a myrmicine 2333 ant venom. D. armigerum exhibits indeed the most streamlined venom peptidome observed in 2334 this study, which consists in a complex of dimeric peptides. Those homodimers and the 2335 heterodimer are both part of a unique myrmicitoxin family (i.e. U₃₂) with no similarity with any 2336 previously reported venom toxin. Dimeric peptides have been found in pseudomyrmecine, 2337 ponerine, ectatomine and myrmecine ant venoms which are well-known for the pain caused by 2338 their sting (Barassé et al., 2019; Kazuma et al., 2017; K. Pluzhnikov et al., 1999; Robinson et 2339 al., 2018; Touchard et al., 2014; Wanandy et al., 2015). However, D. armigerum is an arboreal 2340 ant whose sting is reported as being mildly painful nevertheless lethal to insects (J. O. Schmidt, 2341 2019b). This species uses its venom exclusively to paralyze large prevs that can't be overcome 2342 by their trap-jaws, such as large myriapods (Dejean et al., 2012). Therefore, the dimeric 2343 peptides composing D. armigerum venom seem likely to be neurotoxic against invertebrates, 2344 although their biological activities remain to be demonstrated. The unique composition of this 2345 venom peptidome and its exclusive predatory use at last resort raise the matter of the 2346 evolutionary advantage of such dimeric toxins. We might assume their presence in D. 2347 *armigerum* venom peptidome may be linked to a high stability coupled with an increased target 2348 specificity.

Altogether, the molecular features referring to mature myrmicitoxin families and their presence among, or exclusive to, different myrmicine ant venoms suggest a compromise between the diversity of toxins composing the different arsenals and their biochemical complexity. This might also be coupled with venom specific uses, as myrmicine ants exhibit wide variations in their ecology. However, further integrative studies of ant venom peptidomes in terms of compositions, biological activities and ecological data of biological models are needed.

Moreover, the HCA analysis performed on signal sequences revealed that myrmicitoxin signal sequences constitute 8 superfamilies, therefore leading to the maturation of 37 different myrmicitoxin families across myrmicine ant venoms. Conserved signal regions of venom peptide precursors, coupled with divergent sequences of mature toxins, have already been observed in *T. bicarinatum* and *M. rubida* venom peptidomes, as well as in pseudomyrmecine,
ponerine and myrmecine ant venoms (Barassé et al., 2019; Kazuma et al., 2017; Mariano et al.,
2019; Robinson et al., 2018). Furthermore, this observation was recently extended to aculeate
hymenoptera (Robinson et al., 2018). These results suggest that venom peptides exhibiting
similar signal sequences might share a gene family and may have evolved through gene
duplication and neofunctionalization (Touchard et al., 2018). However, genomic studies are
needed for confirmation.

2367

2368 5. Conclusion

2369 In summary, we provide the first insights into the peptidic diversity of myrmicine ant 2370 venoms. The proteotranscriptomics approach employed in our study allowed the identification 2371 of 78 venom peptide precursors classified into 37 mature peptide families based on sequence 2372 similarities. Most of the myrmicitoxins identified in this study are linear and cationic. Several 2373 toxins families also showed one to three disulfide bonds, and we identified for the first time the 2374 presence of dimeric myrmicitoxins. Myrmicine ant venoms exhibited various venom 2375 compositions, with mature peptide families exclusive to one venom, and some which were 2376 encountered in multiple ones. Altogether, our results suggest a compromise between the 2377 diversity of toxins composing the different arsenals and their biochemical complexity, that 2378 might also be coupled with venom specific uses. Furthermore, the analysis of signal sequences 2379 revealed that the myrmicitoxins precursors can be classified into 8 superfamilies. This result 2380 suggests that myrmicitoxins clustered in one superfamily might belong to the same gene family, 2381 although genomic studies are need for confirmation. Besides, the molecular diversification of 2382 ant venom toxins seems to be led by a multitude of parameters, highlighting the need for more 2383 integrative studies of ant venom peptidomes.

2384

2385 Acknowledgements: V.B. was the recipient of a PhD fellowship from the French Ministry of 2386 Scientific Research. This study was performed in collaboration with the GeT core facility, 2387 Toulouse, France (http://get.genotoul.fr), and was aided by the France Génomique National 2388 institutional infrastructure, funded as part of the "Investissement d'avenir" program managed 2389 by the Agence Nationale pour la Recherche (contract ANR-10-INBS-09). Ant samples were 2390 collected under the authorizations of both the Cameroon Ministry of Scientific Research and 2391 Innovation and the French Ministry of Ecological and Solidarity Transition, in accordance with 2392 Article 17, paragraph 2, of the Nagoya Protocol on Access and Benefit-sharing (Reference 2393 number of the permit: TREL1820249A/54).

2394 Supplementary materials:

Figure S1: Total ion chromatogram (TIC) of crude venom and venom after hexanic extraction from *Solenopsis saevissima*.

Supplementary Table I: Source and composition of ant venom samples used for proteomic analyses.

2398 Supplementary Table II: Source and composition of ant tissue samples used for transcriptomic2399 analyses.

- **Supplementary Table III:** Peptide mass fingerprinting of *Tetramorium africanum* venom.
- **Supplementary Table IV:** Peptide sequences in the venom of *Tetramorium africanum*.
- **Supplementary Table V:** Peptide mass fingerprinting of *Stenamma debile* venom.
- **Supplementary Table VI:** Peptide sequences in the venom of *Stenamma debile*.
- **Supplementary Table VII:** Peptide mass fingerprinting of *Daceton armigerum* crude venom.
- 2405 Supplementary Table VIII: Peptide sequences in the venom of *Daceton armigerum*.
- **Supplementary Table IX:** Peptide mass fingerprinting of *Pogonomyrmex californicus* venom.
- **Supplementary Table X:** Peptide sequences in the venom of *Pogonomyrmex californicus*.
- **Supplementary Table XI:** Peptide mass fingerprinting of *Myrmica ruginodis* venom.
- **Supplementary Table XII:** Peptide sequences in the venom of *Myrmica ruginodis*.
- **Supplementary Table XIII:** Mass fingerprinting of *Solenopsis saevissima* venom after hexanic extraction.
- **Supplementary Table XIV:** Venom glands RNA sequencing data.
- Supplementary Table XV: Addressing table of major contigs expressed by *Myrmica ruginodis* venomglands.
- Supplementary Table XVI: Addressing table of major contigs expressed by *Tetramorium africanum*venom glands.

- **Supplementary Table XVII:** Addressing table of major contigs expressed by *Pogonomyrmex californicus*
- venom glands.
- **Supplementary Table XVIII:** Addressing table of major contigs expressed in *Daceton armigerum* venom
- 2419 glands.

2422

- 2423
- 2424

Chapitre III : Lien entre les toxines peptidiques et la fonction immunitaire

2425 Comme mentionné dans la partie 4 du chapitre 1, les insectes ne possèdent pas de 2426 molécules impliquées dans la reconnaissance du soi et du non-soi, et impliquant une mémoire 2427 à long-terme (molécules du complexe majeur d'histocompatibilité, récepteurs T, anticorps) 2428 (Helge Schlüns & Crozier, 2009). La défense de l'organisme repose donc essentiellement sur 2429 les réactions du système immunitaire inné, incluant notamment des mécanismes de 2430 phagocytose, de nodulation, d'encapsulation ou encore la production de peptides dits 2431 « antimicrobiens » (PAMs), également appelé Host Defense Peptides (HDPs) (Satyavathi et al., 2432 2014).

2433 Ces molécules constituent l'une des premières lignes de défense de l'immunité des 2434 insectes. Ceci est d'autant plus important pour les insectes sociaux (abeilles, fourmis, termites, 2435 etc.). Le fonctionnement d'une colonie implique en effet des échanges alimentaires (e.g. trophallaxie) ainsi que des transferts de symbiontes, ce qui, corrélé à une forte densité de 2436 2437 population couplée à une faible diversité génétique, augmente le risque d'introduction et de 2438 transmission de pathogènes (Aili et al., 2014; Hamilton & Bulmer, 2012). La prévention et/ou 2439 l'éradication de l'infection dépend (i) des comportement adoptés dans le cadre de l'immunité 2440 sociale (e.g. allogrooming, élimination des individus infectés, désinfection du nid) (Aanen, 2441 2018; Cremer, Armitage, & Schmid-Hempel, 2007), (ii) de la rapidité de l'activation des voies 2442 de signalisation impliquées dans le système immunitaire inné et (iii) de l'efficacité des 2443 molécules effectrices de l'immunité contre les pathogènes à l'échelle individuelle (HDPs, 2444 dérivés réactifs de l'oxygène, etc.) (Satyavathi et al., 2014; Helge Schlüns & Crozier, 2009). 2445 La synthèse d'HDPs est principalement effectuée via l'activation des voies Toll et IMD, deux 2446 voies immunitaires connues pour répondre aux infections bactériennes (Bier & Guichard, 2447 2012). Chez les insectes, cette synthèse s'effectue au niveau des hémocytes ainsi qu'au niveau 2448 d'organes particuliers tels que le corps gras et certaines parties du tube digestif (e.g. mésentéron, 2449 tubes de Malpighi). Les molécules effectrices synthétisées sont ensuite sécrétées dans 2450 l'hémolymphe.

2451 Cependant, une autre source de molécules antimicrobiennes, notamment chez les 2452 Hyménoptères, est le venin (Moreau, 2013). Bien que cette hypothèse n'ait jamais été 2453 confirmée, il est supposé que ces molécules feraient partie d'un système de défense interne aux 2454 glandes à venin afin d'éviter la contamination lors de l'envenimation ainsi que pour prévenir l'infection des proies ramenées dans la colonie avant leur consommation (Moreau, 2013; Orivel
et al., 2001). Il a néanmoins été démontré que des toxines avaient évolué plusieurs fois de
manière indépendante à partir des gènes de l'immunité chez les Vertébrés (Whittington et al.,
2008).

2459 Ce chapitre a pour objectif d'évaluer le lien potentiel entre les peptides de venin et la 2460 fonction immunitaire individuelle des fourmis. Nous avons donc choisi de nous consacrer à 2461 l'immunité innée de la fourmi Tetramorium bicarinatum, un modèle d'étude historique de 2462 l'équipe BTSB dont la composition peptidique du venin a été récemment décrite (Touchard et 2463 al., 2018). Deux peptides majoritaires de ce venin, Bicarinaline et P17, ont respectivement 2464 montré des effets antimicrobiens et immunomodulateurs chez l'Homme (Benmoussa et al., 2465 2017; Duraisamy et al., 2020; Rifflet et al., 2012; Téné et al., 2014). Les transcrits codant pour 2466 ces peptides ont de plus été retrouvés en dehors des glandes à venin, dans l'abdomen de la 2467 fourmi. Nous posons l'hypothèse que ces peptides, voire d'autres peptides du venin, seraient 2468 des effecteurs de l'immunité dite innée de la fourmi T. bicarinatum au niveau individuel. Si tel 2469 est le cas, les gènes les codant devraient s'exprimer dans des organes impliqués dans l'immunité 2470 innée des insectes, et être surexprimés face à une infection bactérienne.

Le travail présenté dans ce chapitre vise à étudier la relation des toxines peptidiques avec le système immunitaire de *T. bicarinatum* au travers d'approches basées sur l'étude de l'expression des gènes les codant au niveau transcriptionnel (i.e. recherche des transcrits) et traductionnel (i.e. recherche des peptides matures). Ce chapitre vise deux objectifs, se déclinant en deux parties :

2476 2477 Localiser l'expression des gènes codant les toxines peptidiques en dehors du système vulnérant,

2478

- Étudier la réponse des gènes codant ces toxines face à un challenge bactérien.

2479

Etude préliminaire du lien entre les peptides du venin de *Tetramorium bicarinatum* et l'immunité innée de la fourmi

2482 Dans cette étude préliminaire, nous nous sommes attachés à vérifier l'existence d'un lien 2483 entre les peptides du venin de *T. bicarinatum* (i.e. Bicarinaline et P17) et son système 2484 immunitaire inné. Cette étude s'est déroulée lors de mon stage de Master 2 (2017).

Une première analyse en RT-PCR (35 cycles) a été effectuée afin d'évaluer l'expression
des gènes codant la Bicarinaline et le P17 dans différents organes placés par lots de cinq,
composant l'abdomen de la fourmi (Figure 30). Cette analyse a révélé la présence de signaux
d'expression dans des organes impliqués dans l'immunité innée des insectes (i.e. mésentéron,
tubes de Malpighi et corps gras) (Figure 31). La faiblesse de ces signaux peut être expliquée
par la faible quantité d'ARNs récoltés à partir d'organes isolés ainsi que par les biais dus à la
rétrotranscription et à la sensibilité de la technique de PCR classique.

2492

Figure 30 : Schéma général de l'anatomie interne d'une fourmi et des organes composant le tube digestif
et le système vulnérant.

Figure 31 : Expression des gènes *bicarinaline* et *p17* dans différents organes contenus dans l'abdomen de la fourmi *Tetramorium bicarinatum*, obtenus par RT-PCR (60°C, 35 cycles). Les migrations ont été réalisées sur des gels d'agarose 2%. Chaque échantillon est constitué d'un lot de 5 tissus. Les gènes *rpl-18* et *actine* servent de gènes de références. Les signaux positifs d'expression dans les différents organes isolés sont encadrés en rouge.

2501 La réponse des gènes codant pour ces deux myrmecitoxines, ainsi que des gènes relatifs à 2502 l'immunité innée (i.e. dorsal pour la voie Toll, relish pour la voie IMD) a également été évaluée 2503 suite à une infection bactérienne. L'infection a été réalisée en continue sur trois jours avec une 2504 bactérie à Gram négatif, Serratia marcescens. Des extractions ARNs ont été réalisées à partir 2505 des glandes à venin et d'abdomens dépourvus d'appareils vulnérants à trois pas de temps (i.e. 2506 24h, 48h, 72h). Une première évaluation par RT-PCR (35 cycles) a montré la présence de 2507 transcrits dans la majorité des échantillons de la condition « infectés », 24 et 72h après le début 2508 de l'infection. Tout comme l'expérimentation précédente, la faiblesse de certains signaux peut 2509 également être expliquée par la faible quantité d'ARNs récoltés ainsi que par les biais dus à la rétrotranscription et à la sensibilité de la technique de PCR classique (Figure 32). 2510

2512

2513 Figure 32: Expression des gènes dorsal, relish, bicarinaline et p17 déterminées par RT-PCR (60°C, 35 2514 cycles) dans les abdomens sans glande à venin, et les glandes à venin de Tetramorium bicarinatum, à 2515 différents pas de temps après le début de l'infection par Serratia marcescens : 24h (A), 48h (B) et 72h (C). 2516 Les migrations ont été réalisées sur des gels d'agarose 2%. Chaque échantillon est constitué d'un lot de 3 2517 tissus. Les gènes rpl-18 et actine servaient de gènes de référence. T : Témoin négatif d'amplification PCR 2518 (H₂O); AC : abdomens sans glande ni réservoir de la condition contrôle; GC : glandes à venin de la 2519 condition contrôle ; AI : abdomens sans glande ni réservoir de la condition infecté ; GI : glandes à venin de 2520 la condition infecté.

Une seconde évaluation par qPCR a été réalisée sur ces mêmes échantillons. Une tendance à la surexpression a été observée pour l'ensemble des gènes, excepté *bicarinaline*, dans les échantillons de glandes à venin dès 24h après le début de l'infection. Une tendance à la

- 2524 surexpression a également été observée dans les abdomens dépourvus d'appareils vulnérant au
- pas de temps « 72h ». Les échantillons ont présenté néanmoins des ratios d'expression très
 variables les uns par rapport aux autres pour un même gène (Figure 33).

Figure 33 : Expression des gènes *pgrp-le* (IMD), *dorsal* (Toll), *bicarinaline*, et *p17* déterminées par qPCR chez des fourmis *Tetramorium bicarinatum* saines et infectées par *Serratia marcescens*. Les variations d'expression sont données par les ratios moyens d'expression \pm SE (Erreur Standard) calculés par la méthode du $2^{-\Delta\Delta C_T}$ (Livak & Schmittgen, 2001). Trois échantillons ont été réalisés par pas de temps et par condition. Chaque échantillon est constitué d'un lot de 3 tissus.

L'absence de surexpression à 24 h dans les abdomens sans appareil vulnérant peut être expliquée par le contenu de l'échantillon ainsi que par le mode d'infection. En effet, lors d'une 2535 infection par voie orale, le pathogène doit traverser la barrière épithéliale avant de se retrouver 2536 dans l'hémolymphe et de déclencher une réponse immunitaire systémique (Nehme et al., 2007). 2537 Ceci a notamment été étayé par Nehme et ses collaborateurs (2007) chez Drosophila 2538 melanogaster lors d'une infection par Serratia marcescens. Une réponse locale par activation 2539 de la transcription du gène codant pour la Diptéricine a été obtenue dans les 24 h suivant une 2540 infection par voie orale mais une réponse systémique n'a pas été mise en évidence dans ce laps 2541 de temps (Nehme et al., 2007). Il est donc nécessaire de décomposer les échantillons 2542 d'abdomens sans glande afin d'étudier les réponses au niveau local, directement sur les organes 2543 composant le tube digestif.

Les activations de transcriptions semblent également s'effectuer par vagues temps- et tissusdépendantes comme cela a déjà été démontré pour les activités transcriptionnelles des facteurs de transcription kB chez *D. melanogaster* (Tanenhaus, Zhang, & Yin, 2012). Ceci pourrait en partie expliquer les variations d'expression d'un échantillon à l'autre, mais il est néanmoins nécessaire de réduire le nombre d'individus par lot tout en augmentant le nombre d'échantillons pour tenter de pallier à cette variabilité.

Bien que seules des tendances aient pu être dégagées, ces dernières, couplées à la présence de transcrits codant pour la Bicarinaline et P17 dans des organes impliqués dans l'immunité des insectes, fournissent des perspectives intéressantes quant au lien entre les toxines de venin et l'immunité innée individuelle de la fourmi. Au vu des variations d'expression observées pour les gènes *bicarinaline, p17, dorsal* et *pgrp-le*, il est en effet probable qu'il y ait une connexion entre ces différents acteurs.

2556

2557 2. Localisation des peptides en dehors des appareils vulnérants

2558 Dans cette partie, nous nous sommes attachés à évaluer l'expression de gènes codant des 2559 peptides de venin dans des organes impliqués dans l'immunité innée des insectes. Les organes 2560 sélectionnés à ce titre pour notre étude sont les corps gras et différentes parties du tube digestif 2561 (i.e. mésentéron, tubes de Malpighi, rectum). Il s'agit dans un premier temps de confirmer la localisation de la Bicarinaline et du P17 dans les différents tissus composant l'abdomen par 2562 2563 RT-PCR. L'étude a ensuite été étendue à sept autres toxines peptidiques appartenant aux 2564 superfamilles de précurseurs A et B (i.e. U₃-MYRTX-Tb1a, U₄-MYRTX-Tb1a, U₅-MYRTX-2565 Tb1a, U7-MYRTX-Tb1a, U8-MYRTX-Tb1a, U9-MYRTX-Tb1a et U16-MYRTX-Tb1a), dont 2566 les séquences signal et propeptide présentent 20 à 40% d'identité de séquences avec celles de 2567 HDPs de la drosophile (i.e. drosomycine, cécropine, metchnikowin) (Touchard et al., 2018). La

2568 seconde partie de cette étude consiste à vérifier la présence effective de la Bicarinaline et du 2569 P17 en dehors des appareils vulnérants, au moyen d'une immunohistochimie indirecte.

- 2570
- 2571

2.1. Localisation des transcrits codant certains peptides de venin dans l'abdomen de T. 2572 bicarinatum

2573 Cette analyse a été réalisée sur six types de tissus : des glandes à venin, des abdomens 2574 dépourvus d'appareil vulnérant, des mésentérons, des tubes de Malpighi, des rectums et des 2575 corps gras. Chaque échantillon contenait un lot de 5 organes et cette expérimentation a été 2576 répétée 3 fois.

L'électrophorèse des produits PCR a montré que les deux gènes de référence, rpl-18 et 2577 2578 actine, sont exprimés dans tous les organes à l'exception des rectums. Cet organe n'a donc pas 2579 été pris en compte dans la suite de l'étude. Les signaux d'expression visibles pour chaque gène 2580 dans les abdomens dépourvus d'appareil vulnérant confirment la présence de transcrits codant pour les toxines testées en dehors des glandes à venin (Figure 34). 2581

2582 Des signaux d'expression ont notamment été détectés pour p17 dans tous les organes 2583 testés. Les gènes *u3-Tb1a* et *u9-Tb1a* étaient exprimés dans les mésentérons isolés. Des signaux 2584 d'expression ont été détectés dans les tubes de Malpighi pour le gène *u16-Tb1a*, ainsi que dans 2585 les corps gras pour les gènes *u3-Tb1a*, *u5-Tb1a* et *u8-Tb1a*.

2586 Les signaux observés sont néanmoins légers et reflètent donc une faible quantité d'ADNc 2587 de départ. Ceci peut également expliquer l'absence de signaux pour les gènes bicarinaline, u4-2588 Tb1a et u7-Tb1a dans les organes isolés. Le recours à des techniques d'analyses 2589 transcriptomiques plus sensibles a donc semblé nécessaire.

2590

Figure 34 : Expressions des gènes *rpl-18, actine, bicarinaline, p17, u3-Tb1a, u4-Tb1a, u5-Tb1a, u7- Tb1a, u8-Tb1a, u9-Tb1a* et *u16-Tb1a* déterminées par RT-PCR (60°C, 40 cycles) dans les organes de *Tetramorium bicarinatum.* Les migrations ont été réalisées sur des gels d'agarose 2%. Chaque
échantillon est composé d'un lot de 5 tissus. Les signaux positifs sont encadrés en rouge.

2595 2.2. Localisation de la Bicarinaline et du P17 dans l'abdomen de T. bicarinatum

2596 Afin de vérifier la présence effective de la Bicarinaline et du P17 en dehors des glandes à 2597 venin, un protocole d'immunohistochimie indirecte a été appliqué sur les tissus composant 2598 l'abdomen. Elle permet de localiser les protéines au niveau cellulaire et fait intervenir deux 2599 types d'anticorps : des anticorps primaires, dirigés contre la ou les protéines ciblées, et des 2600 anticorps secondaires couplés à un fluorochrome et dirigés contre les anticorps primaires. Le 2601 fait d'utiliser ces deux sortes d'anticorps offre une meilleure sensibilité. Le protocole de production choisi a permis d'obtenir des anticorps anti-Bicarinaline et anti-P17 spécifiques des 2602 2603 parties N-terminales, ceci afin de ne révéler les peptides qu'après leur maturation. Des signaux 2604 intracellulaires, localisés majoritairement dans des vésicules de sécrétion étaient donc attendus. 2605 Les anticorps secondaires étaient couplés au Texas Red.

2606 Des signaux positifs (i.e. point intracellulaires) ont été détectés pour les deux peptides dans 2607 les glandes à venin, confirmant la validité des anticorps utilisés (Figure 35 - E et F). Il serait 2608 néanmoins nécessaire de préciser l'allure de ces signaux avec un objectif X40. Ces résultats 2609 nous ont permis d'effectuer les réglages de luminosité nécessaires pour la distinction des deux 2610 peptides dans les autres organes de l'abdomen de la fourmi *T. bicarinatum*, notamment par 2611 rapport à un potentiel bruit de fond.

2612

Figure 35 : Localisation de la Bicarinaline et du P17 dans les glandes à venin de *Tetramorium bicarinatum*réalisée par immunohistochimie indirecte (grossissement X10). Les anticorps secondaires sont couplés au
Texas Red. Les photos A, B et C ont été prises en lumière blanche. Les photos D, E et F montrent les
superpositions des signaux DAPI (noyaux cellulaires) et Texas Red (Témoin anticorps secondaire (D),
Bicarinaline (E) et P17 (F)).

Bien que les signaux observés soient de manière générale plus diffus que dans les glandes
à venin, la présence des deux peptides a été notée dans les tubes digestifs (Figure 36). Des
signaux positifs sont visibles pour la Bicarinaline au niveau de l'intestin inférieur (Figure 36 E) tandis que le P17 semble être réparti de l'œsophage au mésentéron (Figure 36 - F).

2622

Figure 36 : Localisation de la Bicarinaline et du P17 dans les tubes digestifs de *Tetramorium bicarinatum* réalisée par immunohistochimie indirecte (grossissement X4). Les anticorps secondaires sont couplés au

- Texas Red. Les photos A, B et C ont été prises en lumière blanche. Les photos D, E et F montrent les
 superpositions des signaux DAPI (noyaux cellulaires) et Texas Red (Témoin anticorps secondaire (D),
 Bicarinaline (E) et P17 (F)).
- De la même manière, les deux peptides semblent également présents au niveau des tubes de Malpighi (Figure 37 - E et F). Il serait néanmoins nécessaire de préciser l'allure de ces signaux à un grossissement plus important (X40) pour ces organes. En revanche, de forts signaux sont présents dans certaines cellules du corps gras (Figure 38 - E et F). Les gènes codant pour la
- 2633 Bicarinaline et P17 sont donc transcrits et produits dans ces organes.

Figure 37 : Localisation de la Bicarinaline et du P17 dans les tubes de Malpighi de *Tetramorium bicarinatum*réalisée par immunohistochimie indirecte (grossissement X10). Les anticorps secondaires sont couplés au
Texas Red. Les photos A, B et C ont été prises en lumière blanche. Les photos D, E et F montrent les
superpositions des signaux DAPI (noyaux cellulaires) et Texas Red (Témoin anticorps secondaire (D),
Bicarinaline (E) et P17 (F)).

2640

Figure 38 : Localisation de la Bicarinaline et du P17 dans les corps gras de *Tetramorium bicarinatum* réalisée
par immunohistochimie indirecte (grossissement X10). Les photos A, B et C ont été prises en lumière
blanche. Les photos D, E et F montrent les superpositions des signaux DAPI (noyaux cellulaires) et Texas
Red (Témoin anticorps secondaire (D), Bicarinaline (E) et P17 (F)).

2645 Deux types cellulaires ont été distingués dans les corps gras de la fourmi *T*. 2646 *bicarinatum* selon la forme des noyaux : les trophocytes avec des noyaux en demi-lune et les 2647 oenocytes présentant des noyaux circulaires (Roma, Mathias, & Bueno, 2006). Les signaux 2648 relatifs aux deux peptides testés sont systématiquement observés au niveau des oenocytes 2649 (Figure 39).

Figure 39 : Localisation de la Bicarinaline et du P17 dans les corps gras de *Tetramorium bicarinatum* réalisée
par immunohistochimie indirecte (grossissement X10). Les anticorps secondaires étaient couplés au Texas
Red. Les photos montrent les superpositions des signaux DAPI (noyaux cellulaires) et Texas Red
(Bicarinaline (A) et P17 (B)).

2656 Ces deux types cellulaires ont en effet déjà été décrits dans les corps gras des insectes, en 2657 association avec d'autres, et sont les seuls retrouvés dans les corps gras de fourmis (Roma et al., 2006). Les trophocytes sont d'origine mésodermique tandis que les oenocytes sont d'origine 2658 2659 ectodermique. Chez les fourmis myrmicines de la tribu des Attini, les oenocytes sont distribués 2660 parmi les trophocytes (Roma, Bueno, & Camargo-Mathias, 2010) (Figure 40). Chez la fourmi T. bicarinatum, deux types de distribution des oenocytes ont été observés : des cellules 2661 relativement isolées parmi les trophocytes (Figure 39 – A), ou des amas cellulaires distincts 2662 (Figure 39 - B). Il serait néanmoins nécessaire de confirmer la distinction de ces types 2663 2664 cellulaires chez T. bicarinatum en histologie.

2669 De manière générale, les oenocytes sont connus chez les insectes pour leur rôle dans le 2670 métabolisme des lipides, la détoxification et pour l'absorption de substances circulant dans 2671 l'hémolymphe. Ils participent également à la synthèse de composés cuticulaires et à l'immunité 2672 innée via la synthèse de lyzozymes, bien que cette dernière fonction n'ait été jusqu'à présent 2673 observée que chez le moustique Aedes aegypti (Martins & Ramalho-Ortigão, 2012; Martins et 2674 al., 2011; Roma et al., 2010). Leur distribution dans le corps gras varie selon les modèles 2675 biologiques, tout comme leur profil d'expression protéique qui reste à ce jour peu caractérisé 2676 (Martins & Ramalho-Ortigão, 2012; Roma et al., 2010).

2677 L'ensemble des fonctions physiologiques des cellules du corps gras n'a de plus pas été décrit précisément chez les Formicidae. Les premières études cytologiques chez des fourmis de 2678 2679 la tribu des Attini (Myrmicinae) ont néanmoins montré que les trophocytes possèdent toute la 2680 machinerie cellulaire nécessaire à la synthèse et au stockage des protéines (i.e. réticulum endoplasmique rugueux lamellaire et vésiculaire, appareil de Golgi, mitochondries, granules et 2681 2682 système vacuolaire). La présence de protéines ainsi que celle de réticulums endoplasmiques 2683 rugueux lamellaires et vésiculaires a également été montrée dans des oenocytes d'ouvrières 2684 Cyphomyrmex rimosus (Myrmicinae) (Roma et al., 2010, 2006).

La présence de transcrits codant pour la Bicarinaline et le P17 dans le corps gras, couplée à leur détection dans les oenocytes, laissent supposer que ces cellules sont impliquées dans la production et le stockage constitutifs de ces peptides. Il serait néanmoins nécessaire de vérifier que les gènes codant pour ces peptides sont exprimés de manière spécifique au sein de ce type
cellulaire pour l'affirmer. Pour ceci, une technique telle que la qPCR après isolement de ces
cellules pourrait être envisagée.

2691

2692 **3.** Réponse des gènes codant les peptides à une infection bactérienne

Les gènes codant pour des toxines du venin de *T. bicarinatum* sont exprimés dans des organes impliqués dans l'immunité inné des insectes (i.e. corps gras, tubes de Malpighi, mésentéron). La réponse de ces gènes a été évaluée suite à une infection orale par la bactérie *Serratia marcescens* (Gram négatif). Au niveau transcriptomique, la réponse a été analysée au moyen de la RT-qPCR et de la ddPCR, techniques plus précises que la RT-PCR. La réponse au niveau protéique a également été estimée *via* une immunohistochimie indirecte.

Des expérimentations faisant suite à l'étude préliminaire nous ont permis de définir la méthode d'extraction ARN optimale (Cf. partie *4.4.2* de ce chapitre), ainsi que le nombre minimal d'organes requise pour l'obtention de signaux corrects par RT-qPCR. Les premiers résultats nous ont montré qu'il était possible de réduire le nombre d'abdomens par échantillon, mais pas le nombre d'organes isolés. Ces mêmes expérimentations nous ont également permis de définir que le pas de temps le plus pertinent pour l'étude de la réponse des gènes testés était 24h après l'ingestion de l'agent pathogène.

Quatre types de tissus ont donc été isolés 24h après le début de l'infection : des glandes à
venin, des abdomens dépourvus d'appareil vulnérant, des corps gras et des tubes digestifs (i.e.
mésentérons et tubes de Malpighi inclus).

Les glandes à venin ont servi de témoins positifs pour les gènes codant les peptides. Elles ont été placées par lots de 5. Un total de deux échantillons a été constitué par condition (i.e. contrôle et infecté). Les abdomens dépourvus d'appareil vulnérant ont été placés par lots de 2 tandis que les organes isolés (i.e. corps gras et tubes digestifs) ont été placés par lots de 5. Un total de vingt échantillons a été constitué par condition pour ces types de tissus.

- 2714
- 2715

3.1. Évaluation au niveau transcriptomique par la technique de qPCR

2716 La qPCR est plus précise et plus sensible que la PCR classique suivie d'une révélation 2717 sur gel d'agarose, et détermine le nombre de cycles nécessaires avant le début de la phase 2718 exponentielle de l'amplification (i.e. C_T , cycle threshold). Les échantillons ont été passé en 2719 triplicatas pour chaque gène testé. Ces gènes incluent un gène de référence (*rpl-18*), 2 gènes 2720 codant pour des facteurs NF-κB de deux voies immunitaires des insectes réagissant aux

- infections bactériennes (*dorsal* pour la voie Toll et *relish* pour la voie IMD), et 5 gènes codant
 pour des peptides de venin (*bicarinaline*, *p17*, *u3-Tb1a*, *u8-Tb1a* et *u9-Tb1a*). Les gènes *u4- Tb1a*, *u5-Tb1a*, *u7-Tb1a* et *u16-Tb1a* testés précédemment ont été retirés de cette étude, les
 couples d'amorces n'étant pas suffisamment efficaces pour les techniques utilisées. Les
 séquences des transcrits codant les peptides de venin sont en effet très conservées, rendant le
 dessin d'amorces spécifiques particulièrement difficile.
- 2727 Les ratios d'expression de nos gènes d'intérêt ont été calculés grâce à la méthode de 2728 quantification relative du $2^{-\Delta\Delta CT}$ par rapport au gène de référence *rpl-18* (Livak & Schmittgen, 2729 2001).

2730 Les gènes codant pour les peptides du venin de T. bicarinatum sont exprimés dans les glandes à venin, avec des C_T moyens compris entre 17 et 26. Ce résultat confirme nos études 2731 2732 des transcriptomes des glandes à venin dans lesquels les transcrits codant les peptides de venin 2733 possèdent généralement les niveaux d'expression les plus élevés. En revanche, des signaux 2734 d'expression moins élevés ont été détectés pour les gènes *dorsal* et *relish*, avec des C_T moyens 2735 compris entre 30 et 34. De manière générale, les signaux détectés pour un même gène ont 2736 présenté de grandes variabilités entre les échantillons. Le calcul des ratios d'expression a 2737 néanmoins été effectué à titre indicatif, et a montré que tous les gènes, exceptés relish et u9-2738 Tb1a ont tendance à être surexprimé dans les glandes à venin des individus infectés (Figure 2739 41).

2741

Figure 41 : Répartition des C_T moyens et ratio d'expression $(2^{-\Delta\Delta C}_T)$ obtenus par qPCR dans les glandes à venin de *Tetramorium bicarinatum*. Chaque point rouge représente un échantillon (n = 4/condition).

2745 Les C_T moyens des gènes codant les toxines sont généralement moins élevés dans les 2746 tissus autres que les glandes à venin, allant de 25 pour le plus exprimé (i.e. *p17*), à 33 pour le 2747 moins exprimé (i.e. *u8-Tb1a*). Les expressions des gènes codant les toxines, excepté *p17*, ont 2748 d'ailleurs été détectées dans peu d'échantillons d'abdomens sains comparativement aux 2749 individus infectés (Figure 42).

Figure 42 : Répartition des C_T moyens et ratio d'expression $(2^{-\Delta\Delta C}_{T})$ obtenus par qPCR dans les tissus de *Tetramorium bicarinatum* saines ou infectées par *Serratia marcescens*. Chaque point rouge représente un échantillon (n = 20/condition).

2754 Les analyses des CT moyens entre les conditions ont montré que les abdomens des 2755 individus infectés présentent des C_T moyens significativement moins élevés pour les gènes *dorsal*, p17 et *rpl-18* (Mann-Whitney, P < 0,01). Cette tendance a également été notée pour le 2756 2757 gène relish (Tableau IV, Figure 42). Dans les tubes digestifs, seul le gène dorsal a montré des C_T moyens significativement moins élevés chez les individus infectés (Mann-Whitney, P < 2758 2759 0,05). Aucune différence significative n'a été notée entre les C_T moyens des deux conditions 2760 pour les gènes codant les toxines dans les corps gras et les tubes digestifs (Tableau IV, Figure 2761 42).

2762

2763 Tableau IV : Valeurs de rangs (W) et probabilités (P) obtenus suite aux tests de Mann-Whitney exécutés

2764 entre les valeurs des C_T moyens des gènes *rpl-18*, *dorsal*, *relish*, *p17*, *u3-Tb1a*, *u8-Tb1a*, *bicarinaline* et *u9-*

2765 Tb1a. Les CT ont été déterminés par RT-qPCR chez des Tetramorium bicarinatum saines ou infectées par

2766 Serratia marcescens.

Gènes/Organes	Abdo	omens	Corp	s gras	Tubes of	ligestifs
	W	Р	W	Р	W	Р
rpl-18	72	0,007	135	0,760	101	0,323
dorsal	72	0,007	139	0,929	119	0,047
relish	96	0,062	168	0,433	170	0,588
<i>p17</i>	56	0,002	139	0,929	154	0,452
u3-Tb1a	38	0,141	82	0,719	136	0,786
u8-Tb1a	43	0,108	105	1	138	0,495
bicarinaline	12	0,250	31	0,436	31	0,673
u9-Tb1a	32	0,879	47	0,418	62	0,923

2767

2768 Les ratios d'expression présentent également une grande variabilité entre les échantillons 2769 d'une même condition pour chaque type de tissu (Figure 8). Ils ont néanmoins montré que le 2770 gène *relish* est significativement sous-exprimé dans les abdomens et les corps gras des individus 2771 infectés (Mann-Whitney, P < 0,05). Le gène *bicarinaline* est également sous-exprimé de 2772 manière significative dans les abdomens des fourmis infectées (Mann-Whitney, P < 0,05). Une 2773 tendance à la surexpression a aussi été notée pour le gène *dorsal* dans les tubes digestifs des 2774 individus infectés (Tableau V, Figure 42). Les gènes codant les toxines n'ont montré aucune 2775 différence d'expression significative entre les deux conditions dans les corps gras et les tubes
2776 digestifs (Tableau V, Figure 42).

2777

- 2778 Tableau V: Valeurs de rangs (W) et probabilités (P) obtenus suite aux tests de Mann-Whitney exécutés
- entre les ratio d'expression (i.e. $2^{-\Delta\Delta C}_{T}$) des gènes de l'immunité (*dorsal* et *relish*) et codant pour les toxines du venin de *Tetramorium bicarinatum (p17, u3-Tb1a, u8-Tb1a, bicarinaline* et *u9-Tb1a*). Les ratios
- 2781 d'expression ont été déterminés par RT-qPCR chez des fourmis saines ou infectées par *Serratia marcescens*.
- 2781 d'expression ont de determines par R1-qr eR enez des fournis sames ou nirectees par servatia marcescens.

Gènes/Organes	Abdomens		Corps gras		Tubes digestifs	
	W	Р	W	Р	W	Р
dorsal	188	0,258	126	0,736	251	0,089
relish	85	0,025	81	0,029	181	0,813
<i>p17</i>	106	0,126	140	0,901	173	0,478
u3-Tb1a	68	0,528	126	0,830	153	0,791
u8-Tb1a	70	0,394	109	0,881	92	0,281
bicarinaline	0	0,036	56	0,190	35	0,963
u9-Tb1a	24	0,574	78	0,254	50	0,539

2782

2783Au vu des différences observées dans les valeurs de C_T entre conditions pour les gènes2784dorsal et p17, nous aurions dû observer des surexpressions pour ces gènes dans les abdomens2785infectés grâce aux calculs des $2^{-\Delta\Delta C}$ T. Cette non-concordance entre ratio d'expression et valeurs2786brutes des C_T dans les abdomens peut être expliquée par la variation des C_T du gène *rpl-18* entre2787les deux conditions.

2788 Pour nos données, le gène rpl-18 a été considéré comme étant le seul gène stable entre 2789 les conditions par le logiciel Ref-Finder (Xie, Xiao, Chen, Xu, & Zhang, 2012). Il a également 2790 été validé en tant que gène de référence chez la fourmi Solenopsis invicta, grâce à sa stabilité 2791 qu'elle que soit la caste, le stade de développement et le tissu testé (Cheng, Zhang, He, & Liang, 2792 2013). Cependant, les variations observées dans nos échantillons rendent ininterprétables les 2793 ratios d'expression calculés pour les abdomens. Ceci remet également en question les ratios 2794 d'expression observés dans les autres tissus et souligne la nécessité de s'affranchir d'un gène 2795 de référence pour analyser nos données. Les CT élevés observés pour les gènes codant les 2796 toxines dans les tissus autres que les glandes à venin remettent également en question la 2797 technique utilisée.

2798 Ces résultats suggèrent la nécessité d'utiliser une technique encore plus sensible que la 2799 qPCR, capable de détecter de faibles variations d'expression génétique en quantification 2800 absolue.

- 2801
- 2802

3.2. Évaluation au niveau transcriptomique par la technique de la ddPCR

2803 Contrairement à la qPCR, la ddPCR permet la quantification absolue d'acides 2804 nucléiques dans un échantillon, sans nécessiter l'utilisation d'un gène de référence et à partir 2805 d'une faible quantité d'ARN de départ. La qPCR donne une valeur de cycle à partir de laquelle 2806 la phase exponentielle d'amplification débute (i.e. C_T) tandis que la ddPCR donne le nombre 2807 de copies obtenues en fin de réaction PCR. Cette technique permet donc (i) de détecter de 2808 faibles quantités d'ADN et (ii) de mettre en évidence de très faibles variations d'expression 2809 génétique (Hindson et al., 2011).

2810Notre objectif a été de vérifier l'existence de faibles variations d'expression génétique2811dans les échantillons contrôles et infectés passés précédemment en qPCR. Cinq gènes ont été2812testés. Le gène rpl-18 a été choisi dans le but de vérifier sa stabilité entre les conditions. Le2813gène relish a été sélectionné en raison de son appartenance à la voie immunitaire IMD, connue2814pour réagir majoritairement aux infections par des bactéries à Gram négatif (e.g. Serratia2815marcescens). Les gènes p17, u3-Tb1a et u8-Tb1a ont été testés car ils étaient exprimés dans la2816majorité des échantillons.

Dix échantillons par type de tissu (i.e. abdomens dépourvus d'appareil vulnérant, corps gras et tubes digestifs) et par condition (i.e. contrôle et infecté) ont été choisis aléatoirement parmi les échantillons passés en qPCR. Un échantillon de glandes à venin a également été testé en tant que témoin positif de l'expression des gènes codant pour les toxines.

2821Tous les gènes sont exprimés dans l'échantillon de glandes à venin testé, excepté u8-2822Tb1a. Ce gène a donc été retiré de la suite de l'étude. De manière générale, le nombre de copies2823retrouvées pour chaque gène dans les glandes à venin est cohérent avec les C_T observés en2824qPCR. Pour les gènes p17 et u3-Tb1a, les nombres de copies sont supérieurs à 20 000,2825correspondant à des C_T inférieurs ou égaux à 20. Les gènes rpl-18 et relish ont montré des2826nombres de copies inférieurs à 250, correspondant à des C_T supérieurs à 25 (Figure 43).

Glandes

2827

Figure 43 : Comparaison des données brutes obtenues en qPCR et en ddPCR pour un échantillon de glandes
à venin.

2830 **Tableau VI :** Valeurs de rangs (W) et probabilités (P) obtenus suite aux tests de Mann-Whitney exécutés

2831 entre les nombres de copies observées suite à une ddPCR pour les gènes *rpl-18*, *relish*, *p17* et *u3-Tb1a* chez

2832 des *Tetramorium bicarinatum* saines ou infectées par *Serratia marcescens*.

Gènes/Organes	Abdomens		Corps gras		Tubes digestifs	
	W	Р	W	Р	W	Р
rpl-18	43	0,631	42	0,842	65	0,280
relish	92	0,002	23,5	0,086	55	0,734
<i>p17</i>	62	0,383	45	1	47	0,880
u3-Tb1a	58	0,567	46	0,967	54,5	0,762

Figure 44 : Expression des gènes *rpl-18, relish, p17* et *u3-Tb1a* déterminées par ddPCR dans différents
organes de *Tetramorium bicarinatum* saines ou infectées par *Serratia marcescens*. Chaque point rouge
représente un échantillon.

Le gène *rpl-18* s'est révélé instable entre les conditions dans les abdomens et tubes digestifs. Bien qu'aucune différence statistique significative n'ait été notée entre les deux conditions, les nombres moyens de copies étaient supérieurs dans ces organes chez les individus infectés (Figure 44, Tableau VI).

2842 Les données de ddPCR ont montré que le gène *relish* est significativement surexprimé 2843 dans les échantillons d'abdomens infectés (Mann-Whitney, P < 0.01), contrairement à ce qui a 2844 été observé en qPCR. A contrario, les échantillons de corps gras infectés ont tendance à 2845 présenter moins de copies pour ce gène comparativement aux individus contrôles. Ce dernier 2846 résultat est cohérent par rapport à la sous-expression significative observée en qPCR. Aucune 2847 différence significative pour le gène relish n'a cependant été observée dans les tubes digestifs, bien que le nombre moyen de copies soit supérieur chez les individus infectés. Ce résultat 2848 2849 semblerait cohérent avec le fait que l'infection ait été effectuée par voie orale et que *relish* code 2850 pour un NF-*k*B impliqué dans la voie IMD. Cette voie de signalisation immunitaire est en effet 2851 connue chez les insectes pour répondre majoritairement aux infections par des bactéries à Gram 2852 négatif (e.g. Serratia marcescens) (Neyen, Bretscher, Binggeli, & Lemaitre, 2014). Cependant, 2853 le meilleur moyen de vérifier le passage des bactéries dans le milieu intérieur et l'efficacité de 2854 l'infection orale serait d'utiliser des bactéries transformées pour exprimer la GFP (Green
2855 Fluorescent Protein) (Neyen et al., 2014).

Aucune différence significative d'expression n'a également été notée entre les conditions pour les gènes p17 et u3-Tb1a dans les différents tissus testés (Tableau VI). Plus de copies ont néanmoins été observées dans certains échantillons d'abdomens et de corps gras infectés pour le gène p17 (Figure 44).

2860 De manière générale, de grandes variabilités ont été observées dans le nombre de copies 2861 estimées dans les échantillons d'une même condition pour tous les gènes testés. Ces variabilités 2862 empêchent notamment toute conclusion statistique quant à la réponse des gènes codant les 2863 toxines au niveau transcriptomique face à une infection bactérienne (Figures 42 et 44). Elles 2864 ont également été observées dans les données brutes de qPCR (i.e. C_T) et se sont donc 2865 répercutées sur les ratios d'expression relative. L'augmentation du nombre d'échantillons, 2866 couplée à une réduction du nombre d'organes par lot constituerait un moyen de contrer cette 2867 variabilité en ddPCR. Cette technique ne permettra néanmoins pas de la gommer totalement. 2868 Les premiers résultats d'immunohistochimie sur les corps gras apportent en effet un nouvel 2869 éclairage sur la cause de cette variabilité (Cf. partie 2.2). Il est possible que les échantillons 2870 présentent une hétérogénéité quant à leur contenu en oenocytes. Ces caractérisations au niveau 2871 protéique s'étant déroulées après les analyses transcriptomiques, nous n'avons pas tenu compte 2872 de ce facteur lors des dissections et préparations des échantillons pour les analyses par q- et dd-2873 PCR.

- 2874
- 2875

3.3. Évaluation de la réponse au niveau protéique

Afin de vérifier l'expression des gènes codant pour la Bicarinaline et le P17 en termes de quantité intracellulaire de peptides matures suite à un challenge bactérien, un protocole d'immunohistochimie indirecte a été appliqué sur les abdomens de *T. bicarinatum* infectées ou non par la bactérie *Serratia marcescens*.

Un total de 5 échantillons, contenant chacun 5 abdomens, a été constitué : un témoin relatif à l'anticorps secondaire et un échantillon de chaque condition (i.e. contrôle et infecté) pour Bicarinaline et P17. Cette expérimentation a été effectuée deux fois et un total de 50 fourmis a été nécessaire à sa réalisation. Les intensités lumineuses ont été mesurées pour trois types de tissus : les glandes à venin, les corps gras et les tubes de Malpighi. Comme précédemment, les glandes à venin constituent un témoin positif quant à la présence des deux peptides. 2887 Cinq mesures ont été prises par type d'organe et par échantillon, et corrigées par 2888 soustraction de la valeur de l'intensité lumineuse des organes correspondants au témoin de 2889 fluorescence des anticorps secondaires.

2890

2891 Des signaux positifs ont été détectés pour les deux peptides dans les appareils vulnérants 2892 (i.e. glandes à venin et réservoir) (Figure 45), nous permettant de repérer la Bicarinaline et le 2893 P17 dans les autres organes. Pour chaque peptide, les intensités de ces signaux ne diffèrent pas 2894 entre les conditions (Tableau VII).

2895

Figure 45 : Localisation de la Bicarinaline et du P17 dans des glandes à venin de *Tetramorium bicarinatum*des lots contrôle (A et B) et infecté (C et D), réalisée par immunohistochimie indirecte (grossissement X10).
Les anticorps secondaires étaient couplés au Texas Red. Les photos montrent les superpositions des signaux
DAPI (noyaux cellulaires) et Texas Red (Bicarinaline (A et C) et P17 (B et D).

Tableau VII : Valeurs de la statistique t, des degrés de liberté et de la probabilité obtenus suite aux tests t de
 Student, exécutés entre les intensités lumineuses mesurées pour les peptides Bicarinaline et P17 dans les
 organes de *Tetramorium bicarinatum* saines ou infectées par *Serratia marcescens*.

Peptides/Organes	Glandes		Corps gras			Tubes digestifs			
	t	df	Р	t	df	Р	t	df	Р
Bicarinaline	-0,307	5,808	0,770	-0,099	8,480	0,924	1,358	15	0,194
P17	-1,777	8	0,114	-2,447	15	0,027	2,538	13	0,025

2909 La variabilité observée dans les approches transcriptomiques pour les deux peptides est 2910 également visible dans les résultats de cette immunohistochimie indirecte, quel que soit 2911 l'organe testé (Figure 46). P17 était néanmoins présent en plus grande quantité de manière 2912 significative dans les corps gras des fourmis infectées (Test-t de Student, P < 0.05; Tableau 2913 VII ; Figures 46 et 48), alors qu'aucune variation significative n'a été notée dans les approches 2914 transcriptomiques pour ce gène, bien que certains échantillons de corps gras infectés aient 2915 présenté un plus grand nombre de copies en ddPCR comparativement aux échantillons 2916 contrôles. La présence de P17 en plus grande quantité dans les corps gras infectés démontre 2917 néanmoins qu'il y a une production de cette toxine en réponse à une infection bactérienne.

2918Les intensités lumineuses mesurées pour la Bicarinaline dans les corps gras et les tubes2919de Malpighi n'ont présenté aucune différence significative entre les deux conditions (Tableau

2920 VII, Figure 47). La présence de transcrits du gène bicarinaline dans les tubes de Malpighi et 2921 les corps gras, couplée à la présence de la Bicarinaline dans ces mêmes organes chez des 2922 individus sains montrent néanmoins que ce peptide est produit et stocké de manière constitutive. Les intensités lumineuses mesurées dans les tubes de Malpighi semblaient cependant plus 2923 atténuées en moyenne chez les individus infectés (Figures 46 et 47). Le P17 a présenté des 2924 2925 intensités lumineuses significativement moins marquées dans les tubes de Malpighi des 2926 individus infectés (Test-t de Student, Tableau VII; P < 0.05; Figure 47), suggérant que ce 2927 peptide pourrait être sécrété par ces organes en réponse à un challenge bactérien.

Il a déjà été démontré que des gènes codant des HDPs s'exprimaient dans les tubes de Malpighi chez *Drosophila melanogaster* (Tapadia & Verma, 2012). Le phénomène de sécrétion n'a en revanche été démontré que plus récemment pour le corps gras de la mouche *Calliphora vicina*. Cette étude ne s'est cependant pas intéressée aux variations éventuelles entre les types cellulaires de cet organe (Yakovlev et al., 2017).

2933

Figure 47: Localisation de la Bicarinaline et du P17 dans des tubes de Malpighi de *Tetramorium bicarinatum* des lots contrôle (A et B) et infecté (C et D), réalisée par immunohistochimie indirecte
(grossissement X10). Les anticorps secondaires étaient couplés au Texas Red. Les photos montrent les

- 2938 superpositions des signaux DAPI (noyaux cellulaires) et Texas Red de la Bicarinaline (A et C) et du P17 (B
- 2939 et **D**).
- 2940

Figure 48 : Localisation de la Bicarinaline et du P17 dans des corps gras de *Tetramorium bicarinatum* des
lots contrôle (A et B) et infecté (C et D), réalisée par immunohistochimie indirecte (grossissement X10). Les
anticorps secondaires étaient couplés au Texas Red. Les photos montrent les superpositions des signaux
DAPI (noyaux cellulaires) et Texas Red de la Bicarinaline (A et C) et du P17 (B et D).

2946

2947 Indépendamment de l'intensité des signaux, les deux types cellulaires du corps gras (i.e. 2948 trophocytes et oenocytes) ont présenté des signaux positifs chez les individus infectés pour les 2949 deux peptides testés. A contrario, les peptides ont été retrouvés majoritairement dans les 2950 oenocytes chez les individus contrôles (Figure 14). Les deux peptides semblent donc produits 2951 dans les deux types cellulaires suite à un challenge bactérien. La contribution relative de ces 2952 deux types cellulaires à la synthèse d'HDPs suite à une infection microbienne n'a, à notre 2953 connaissance, jamais été étudiée chez les fourmis. Il en est de même pour les cellules composant 2954 les tubes de Malpighi.

Pour résumer, nos résultats montrent que le P17 est moins présent dans les tubes de Malpighi du lot infecté, suggérant qu'il serait sécrété par ces organes en réponse à une infection bactérienne. La Bicarinaline semble suivre la même tendance pour cet organe. En revanche, le P17 est présent en plus grande quantité dans les corps gras du lot infecté. Bien qu'aucune différence significative n'ait été notée pour la Bicarinaline, les résultats d'imagerie ont montré que les deux peptides sont produits dans les deux types cellulaires du corps gras en réponse à une infection bactérienne.

2962 Pour aller plus loin, il serait tout d'abord nécessaire de mettre en place des cultures 2963 primaires des cellules du corps gras et plus particulièrement des oenocytes (Martins et al., 2964 2011), pour ensuite mimer une infection bactérienne grâce à une incubation avec des 2965 lipopolysaccharides. Il serait ensuite possible de déterminer leurs profils d'expressions transcriptomiques respectifs par ddPCR et de confirmer la présence des deux peptides par 2966 2967 immunohistochimie, avec une variabilité moindre que celle observée sur des échantillons 2968 prélevés par dissection. Une technique telle que le RNAseq en différentiel permettrait d'évaluer 2969 de manière précise la réponse au niveau transcriptomique des gènes codant pour les toxines du 2970 venin de *T. bicarinatum* face à un challenge bactérien. Cette technique nécessite néanmoins une 2971 grande quantité d'ARN de départ, ainsi qu'un génome de référence pour relier les transcrits 2972 détectés aux gènes d'intérêt. Au niveau protéique, un phénomène de sécrétion de la Bicarinaline 2973 et du P17 pourrait également être mis en évidence grâce à un dosage de ces derniers dans le 2974 milieu de culture cellulaire via des méthodes de spectrométrie de masse (Yakovlev et al., 2017). 2975

2976 4. Matériel et méthodes

2977 *4.1. Tetramorium bicarinatum : généralités et élevage*

Tetramorium bicarinatum (Nylander, 1846) (Hymenoptera : Formicidae) est une fourmi de
la sous-famille des *Myrmicinae* dont les ouvrières mesurent approximativement 4 mm de long
(Figure 49) (Wetterer, 2009).

Figure 49 : *Tetramorium bicarinatum* (Hymenoptera : Formicidae), photo extraite de AntWeb le 03/08/2020
 (https://www.antweb.org/specimenImages.do?name=casent0005826&project=allantwebants).

Originaire d'Asie du Sud-Est, cette fourmi dites « vagabonde » ou « tramp species » possède certaines caractéristiques propres aux espèces envahissantes telles que l'unicolonialité et la polygynie (Hölldobler & Wilson, 1990). Actuellement très répandue dans les régions tropicales et subtropicales, elle est également présente sur tous les continents, grâce à une reproduction par bouturage et une dispersion *via* les activités commerciales (Figure 50). Il s'agit d'une espèce peu exigeante qui se maintient facilement en laboratoire.

2991

Figure 50: Carte de répartition de *Tetramorium bicarinatum*, extraite de AntMap le 03/08/2020
(https://www.antmaps.org/?mode=species&species=Tetramorium.bicarinatum).

Les individus composant l'élevage de *T. bicarinatum* ont été prélevés dans une serre tropicalisée de Belgique (prélèvement et acheminement assurés par Philippe Wegnez). Un nid artificiel est maintenu au laboratoire à 25 °C et 60-70 % d'humidité (Figure 51). La salle d'élevage étant pourvue de fenêtres, la photopériode est naturelle. Les individus sont nourris 2 fois par semaine avec des vers frais de *Tenebrio molitor* (*Coleoptera : Tenebrionidae*) et des cotons dentaires (1 = 30mm ; \emptyset = 10mm) imbibés de miel dilué (50 : 50 v/v).

Figure 51 : Nid artificiel de *Tetramorium bicarinatum*. Le nid est constitué de deux tubes à essais
recouverts d'aluminium, afin de recréer les conditions de sous-sol. L'aire de chasse, espace réservé à la
distribution de la nourriture et au prélèvement des fourmis, est une boîte en plastique dont les parois
sont enduites de Fluon.

3006 *4.2. Dissections*

3007 Des dissections ont été réalisées pour répondre aux deux objectifs de ce chapitre.

3008 Avant chaque expérimentation, les ouvrières T. bicarinatum ont été placées dans une boîte 3009 de Pétri (h = 16,2mm; ϕ = 90mm) avec un coton dentaire (l = 30mm; ϕ = 10mm) imbibé d'eau et placées à l'obscurité pendant 48h à 25°C. Les fourmis ont été endormies par un passage à -3010 3011 20°C pendant 5 minutes, puis placées dans une boîte de Pétri sur glace (4°C). Elles ont ensuite 3012 été disséquées individuellement dans un cristallisoir contenant une solution de « Phosphate 3013 Buffered Saline » (Sigma-Aldrich) et de Tween® (Sigma-Aldrich) (PBST) sous une loupe binoculaire (Leica). Cette solution a été changée entre chaque individu afin d'éviter toute 3014 3015 contamination par l'hémolymphe. Les dissections ont été réalisées avec des pinces fines 3016 (Sigma-Aldrich : Jewelers forceps, Dumont, N° 5).

3018 *4.3. Localisation des peptides en dehors des appareils vulnérants*

3019

4.3.1. Localisation des transcrits

3020 Vingt ouvrières de T. bicarinatum ont été isolées en boîte de Pétri pendant 48h puis 3021 disséquées comme précédemment décrit dans la partie 4.2. Six types de tissus ont été isolés et 3022 placés par lots de 5 : des appareils vulnérants (glandes à venin et réservoir), des mésentérons, 3023 des tubes de Malpighi, des rectums, des corps gras et des abdomens dépourvus d'appareil 3024 vulnérant. Une attention particulière a été portée à la constitution des échantillons d'abdomens, 3025 afin de s'assurer que les appareils vulnérants en aient été totalement retirés. Chaque type de 3026 tissus a été directement placé dans un tube Eppendorf de 1,5 ml contenant 250 µL d'un tampon 3027 relatif à l'extraction des ARNs, constitué d'acide 4-Morpholineethanesulfonique (20 mM final) (Sigma-Aldrich), d'acide d'Éthylène Diamine Tetra-Acétique (pH = 8) (20 mM final) (Sigma-3028 3029 Aldrich) et d'hydrochlorure de Guanidine (8 M final) (Sigma-Aldrich).

- 3030
- 3031

> <u>Extraction et traitement de l'ARN</u>

Les extractions et traitements des ARNs ont été réalisés immédiatement après les dissections. Les extractions ont été réalisées selon le protocole sans Trizol proposé par Yaffe et ses collaborateurs (Yaffe et al., 2012). Dans le but de supprimer l'ADN génomique contaminant, un traitement DNAse a été effectué avec le kit DNA-free (DNAse treatment and removal reagent, Life technologies, Ambion) selon les recommandations du fournisseur. La quantité d'ARNs contenue dans chaque échantillon a ensuite été estimée avec un spectrophotomètre (NanoDrop 2000, ThermoFisher Scientific).

- 3039
- 3040 3041

<u>Rétrotranscription et amplification par Réaction de Polymérisation en</u> <u>Chaîne (PCR)</u>

3042 Les rétrotranscriptions des ARNs en ADNs complémentaires ont été réalisées avec des
3043 amorces aléatoires (Random hexamers, Invitrogen) sur 80 ng d'ARN totaux pour chaque tissu,
3044 en suivant le protocole fourni avec le kit M-MLV RT (Invitrogen).

Les PCRs ont été effectuées à 60°C (i.e. température d'hybridation des amorces) durant 40 cycles. Deux gènes de référence ont été testés : *rpl-18* et *actine*. Ces deux gènes codent respectivement pour une protéine ribosomique appartenant à la grande sous-unité 60S du ribosome et pour une protéine impliquée dans la motilité, la structure et l'intégrité cellulaire (Cheng et al., 2013). Le gène *actine* a d'ailleurs été largement utilisé comme gène de référence dans de nombreuses études chez les insectes (Bagnall & Kotze, 2010; Cheng et al., 2013). Huit gènes codant des peptides de venin de *T. bicarinatum* ont été testés : *bicarinaline, p17, u3-* 3052 Tb1a, u4-Tb1a, u5-Tb1a, u7-Tb1a, u8-Tb1a, et u9-Tb1a et u16-Tb1a. La Bicarinaline est un peptide antimicrobien (Rifflet et al., 2012; Téné et al., 2014) et P17 possède des propriétés 3053 3054 immunomodulatrices (Brevet n°FR1750280) (Benmoussa et al., 2017). Les peptides U₃, U₄, U₅, U₇, U₈ et U₉ appartiennent à la même famille de précurseurs que celle de la Bicarinaline et 3055 P17. Le peptide U₁₆ appartient à une famille de précurseurs proche de celle de la cécropine-B 3056 3057 de Drosophila melanogaster, un HDP contenu dans l'hémolymphe (Touchard et al., 2018). Les couples d'amorces utilisés sont répertoriés dans le tableau VIII. Les résultats ont été visualisés 3058 3059 via une électrophorèse sur gel d'agarose 2%.

3061 Tableau VIII : Couples d'amorces utilisés pour la PCR. La température d'hybridation des amorces est de
 3062 60 °C.

Amorces	Séquences (5'-3')	Taille des fragments attendus		
rpL-18 F	GTATCTTGAAAGCCGGTGG	190 mb		
rpL-18 R	CATACGTGAGGTCTAAGGGC	180 pb		
actine F	GGCTTCTTCCTCCAGTTTGG	102 mb		
actine R	TACAAGTCCTTGCGGATGTC	192 po		
bicarinaline F	GTTGGTGCTTGCCATAATCC	190 mb		
bicarinaline R	TTTAACCTTGCCCCATGGTA	180 pb		
p17 F	GATGCTGATGCTGCTGCTT	180 mb		
p17 R	GTTGTTGCAGTCCTCCAGT	180 pb		
u3-Tb1a F	TCGTAGGTCTAAGTGGCTCA	155 mb		
u3-Tb1a R	TGGTAGACTCATCAAGCCCG	100 po		
u4-Tb1a F	TGCAACCATCATATCTCCTGTT	156 mb		
u4-Tb1a R	CGCACAGGTTCCTCATCC	150 pb		
u5-Tb1a F	ATCGCATTTATTGTTGGCTTTTG	180 mb		
u5-Tb1a R	TCGCTCTATCAGGTTCGCAT	180 pb		
u7-Tb1a F	ACGATTATCCACACACCCCA	117 mb		
u7-Tb1a R	TTATGCACTGACTCCACGGC	117 po		
u8-Tb1a F	TGGCAATCATGTACGCACC	150 mb		
u8-Tb1a R	ATCCCATGAATCCTTTTACTGCG	150 pb		
u9-Tb1a F	ACCATATACGCACCCCAAGT	150 mb		
u9-Tb1a R	CCCAAAGCCATTTTCAAACCC	138 po		
u16-Tb1a F	TGCAGTTACCATGATCCCTG	101 mb		
u16-Tb1a R	GCCTTTTGTTTGTTTTAAGAGCC	121 po		

3064 Cette expérimentation a été répétée 3 fois. Un total de 30 fourmis a été nécessaire à sa
3065 réalisation.

- 3066
- 3067

4.3.2. Localisation de la Bicarinaline et du P17

3068 Afin de vérifier la présence effective de la Bicarinaline et du P17 en dehors des glandes à 3069 venin, un protocole d'immunohistochimie indirecte a été appliquée sur les tissus composant 3070 l'abdomen. Cette technique permet de localiser les protéines au niveau cellulaire et fait 3071 intervenir deux types d'anticorps : des anticorps primaires, dirigés contre la ou les protéines 3072 ciblées, et des anticorps secondaires couplés à un fluorochrome et dirigés contre les anticorps 3073 primaires. Le fait d'utiliser ces deux sortes d'anticorps permet une meilleure sensibilité. Les 3074 anticorps primaires utilisés étaient respectivement dirigés contre la Bicarinaline et P17 et ont 3075 été produits chez le lapin par la société Eurogentec. Ces anticorps se fixent sur les parties N-3076 terminales des peptides matures. Les anticorps secondaires anti-lapin ont été produits chez la 3077 chèvre et couplés au Texas Red (Invitrogen).

3078 Douze T. bicarinatum ont été isolées en boîte de Pétri pendant 48h puis disséquées comme 3079 décrit dans la partie 4.2. Les abdomens ont été isolés du reste du corps et les tergites T1 et T2 3080 ont été retirés. Un total de quatre échantillons, contenant chacun de 3 abdomens, a été constitué : 3081 deux témoins et un échantillon pour P17 et Bicarinaline. Le témoin négatif est un échantillon 3082 dans lequel aucun anticorps n'a été ajouté. Un second témoin relatif à l'anticorps secondaire, 3083 dans lequel seul l'anticorps couplé au Texas Red a été inclus de manière à vérifier la présence 3084 et la qualité du signal de fluorescence. Après chaque dissection, les échantillons ont été placés 3085 dans une solution dite de « fixation » avant de procéder au protocole d'immunohistochimie. 3086 Cette expérimentation a été répétée 3 fois. Un total de 36 fourmis a été nécessaire à sa 3087 réalisation.

- 3088
- 3089

> <u>Protocole d'immunohistochimie indirecte</u>

Chaque échantillon a été placé dans un 1 mL de solution de fixation (paraformaldéhyde
(4% final) (Acros Organics); PBS (1X) (Sigma-Aldrich); Tween (0,01% final) (SigmaAldrich)), puis incubé à température ambiante pendant 30 minutes. Nous avons ensuite rincé
les échantillons trois fois pendant 5 min avec 1 mL d'une solution de PBST avant de les mettre
en incubation dans 1 mL d'une solution de perméabilisation (PBS (1X final); Triton (1X final)
(Sigma-Aldrich)) pendant 1 heure à température ambiante. Après une nouvelle étape de rinçage
pendant 5 min dans 1 mL de PBST, les échantillons ont été incubés dans 250 μL d'une solution

de blocage constituée de PBST et de Normal Goat Serum (5% final) (NGS) (Invitrogen)) à
température ambiante. A la suite de cette étape, les échantillons ont été incubés avec les
anticorps primaires anti-Bicarinaline et anti-P17 à une concentration de 1 : 250 à 4°C pendant
une nuit à l'obscurité.

3101 Les échantillons ont été remis pendant 1 heure à température ambiante avant d'être 3102 rincés trois fois pendant 10 min dans 1 mL de PBST et d'être transférés dans 200 μ L d'une 3103 solution constituée de NGS 2% final dans du PBST. Nous avons ajouté les anticorps 3104 secondaires à une concentration de 1 : 200 et laissé les échantillons en incubation à 4°C pendant 3105 une nuit à l'obscurité.

3106 Les échantillons ont été remis pendant 1 heure à température ambiante avant d'être 3107 rincés trois fois pendant 10 min dans 1 mL de PBST. Nous les avons transférés dans une 3108 solution constituée de PBS, de glycérol 50% (VWR) et de DAPI dilactate (1 μ g/mL), et en 3109 incubation pendant 1 heure à température ambiante à l'obscurité. Les échantillons ont été 3110 transférés dans une solution de PBS et de glycérol 80%.

3111 De nouvelles dissections ont été réalisées sur ces échantillons directement dans la 3112 solution PBS-glycérol 80% afin d'isoler les organes composant les abdomens. Les glandes à 3113 venin, tubes digestifs (mésentéron et tubes de Malpighi) et corps gras ont été observés entre 3114 lame et lamelle au Cytation Reader 1 (BioTek).

3115

3116

3117

4.4. Etude de la réponse des gènes codant pour les peptides à une infection bactérienne

4.4.1. <u>Microbiologie et infection des fourmis par voie orale</u> Nous avons sélectionné Serratia marcescens (Enterobacteriales : Enterobacteriaceae)

Nous avons sélectionné *Serratia marcescens (Enterobacteriales : Enterobacteriaceae)*pour réaliser l'infection des fourmis. Cette bactérie à Gram négatif est considérée comme
potentiellement entomopathogène du fait de sa capacité à sécréter des chitinases et donc à
dégrader la cuticule pour accéder à la cavité corporelle (van Aalten et al., 2000). Elle est ainsi
couramment utilisée dans l'étude de l'immunité innée des insectes (Neyen et al., 2014).

Nous avons cultivé *S. marcescens* (souche : CIP103235T) selon les recommandations de l'institut Pasteur sur un milieu tryptone-soja (TS) à 30°C en condition aérobie. La culture bactérienne a été réalisée en trois phases. La première phase de culture a consisté en l'étalement d'une cryobille de *S. marcescens* sur un milieu gélosé TS suivi d'une incubation à 30°C pendant une nuit. Pour la seconde phase, dite de « pré-culture », 1 à 2 colonies ont été placées dans 10 mL de milieu TS liquide sous agitation à 30°C pendant une nuit (Figure 52).

3129 La dernière phase de culture consistait à remettre les bactéries en culture dite « fraîche » 3130 jusqu'à atteindre la phase exponentielle de croissance, phase à laquelle toutes les bactéries sont 3131 en division. Pour ceci, 500 µL de la pré-culture liquide ont été prélevés et ajoutés à 10 mL de milieu TS liquide. Cette préparation a ensuite été laissée sous agitation à 30°C. Une lecture de 3132 densité optique (DO) à 600 nm a été effectuée toutes les heures à l'aide d'un lecteur de plaque 3133 3134 (Técan) jusqu'à ce qu'elle soit comprise entre 0,5 et 0,6. Cette DO est caractéristique de la 3135 phase exponentielle de croissance de la souche testée de S. marcescens et a été déterminée 3136 préalablement à ces travaux de thèse. La phase exponentielle de croissance pour cette souche 3137 est atteinte en environ 4 heures et équivaut à une concentration moyenne de 1,5.10⁹ UFC/mL 3138 (équipe BTSB, données non publiées).

3139 Pour préparer la solution d'infection des fourmis, le milieu TS de la culture fraîche a été 3140 éliminé par centrifugation et remplacé par un même volume d'une solution composée d' $\frac{1}{5}$ de 3141 milieu TS et de $\frac{4}{5}$ de solution de saccharose à 50 mM (Figure 52).

3142 Deux lots d'ouvrières *T. bicarinatum* ont été constitués : un lot « contrôle » et un lot 3143 « infecté ». Les fourmis ont été préalablement placées dans des boîtes de Pétri à 25°C pendant 3144 48h comme précédemment décrit dans la partie 4.2. Des cotons dentaires (l = 1 cm; $\emptyset = 1 \text{ cm}$) 3145 imbibés de 1,5 mL de solution d'infection, classique pour le lot « infecté » et sans bactérie pour 3146 le lot « contrôle », ont été placés au milieu des boites de Pétri respectives. Les lots ont ensuite 3147 été replacés à 25°C à l'obscurité pendant 24h (Figure 52).

3149 **Figure 52 :** Microbiologie et infection par voie orale de la fourmi *Tetramorium bicarinatum* par la 3150 bactérie *Serratia marcescens*. Le protocole d'infection se déroule sur trois jours pendant lesquels les

traitements des bactéries et des fourmis sont réalisés de façon parallèle. Les bactéries sont manipulées
de J0 à J2 tandis que les fourmis sont manipulées à J0, J2 et J3.

3153

4.4.2. Etude au niveau transcriptomique

3154 Soixante-dix ouvrières T. bicarinatum ont été isolées par condition (i.e. contrôle et 3155 infecté) puis infectées par voie orale comme décrit dans la partie 4.4.1. Vingt-quatre heures 3156 après infection, quatre types de tissus ont été isolés par dissection comme décrit dans la partie 3157 4.2 : des glandes à venin, des corps gras, des tubes digestifs et des abdomens dépourvus 3158 d'appareil vulnérant. Les tissus ont été placés par lots de manière à optimiser la quantité 3159 d'ARNs récoltés, directement dans le tampon d'extraction. Ainsi, les glandes à venin ont été 3160 placées par lots de 5 et deux échantillons ont été constitués pour chaque condition, servant de 3161 témoins positifs quant à l'expression des gènes codant les peptides testés. Les abdomens 3162 dépourvus d'appareil vulnérant ont été placés par lots de 2. Les corps gras et les tubes digestifs 3163 ont été placés par lots de 5.

Cette expérimentation a été répétée deux fois, permettant de réaliser quatre échantillons
de glandes à venin, et vingt échantillons pour les autres tissus, par condition. Au total, 280
fourmis ont été nécessaires à la réalisation de cette expérimentation.

- 3167
- 3168

> <u>Extraction des ARNs et rétrotranscriptions</u>

Les extractions des ARNs et traitements DNAse ont été réalisés directement après les dissections via l'utilisation du RNeasy[®] Micro Kit (Quiagen) selon les recommandations du fournisseur. Les rétrotranscriptions des ARNs en ADNs complémentaires ont été réalisées avec des amorces aléatoires (Random hexamers, Invitrogen) sur 80 ng d'ARN suivant le protocole fourni avec le kit M-MLV RT (Invitrogen).

- 3174
- 3175

Protocole de PCR quantitative (qPCR)

3176 Afin d'évaluer la réponse des gènes codant les peptides de venin suite à un challenge 3177 bactérien, nous avons choisi de recourir dans un premier temps à la qPCR. Les couples 3178 d'amorces utilisés ont été les mêmes que ceux utilisés pour la PCR classique et sont répertoriés 3179 dans le tableau IX. Ces amorces ont été dessinées via le logiciel primer3 3180 (http://bioinfo.ut.ee/primer3-0.4.0/primer3/) et leurs efficacités étaient comprises entre 97 et 3181 100%. Les gènes testés incluent un gène de référence (*rpl-18*), 2 gènes codant pour des facteurs 3182 NF-kB de deux voies immunitaires des insectes réagissant aux infections bactériennes (dorsal 3183 pour la voie Toll et *relish* pour la voie IMD), et 5 gènes codant pour des peptides de venin

- 3184 (*bicarinaline*, *p17*, *u3-Tb1a*, *u8-Tb1a* et *u9-Tb1a*). Les gènes *u4-Tb1a*, *u5-Tb1a*, *u7-Tb1a* et
 3185 *u16-Tb1a* testés précédemment ont été retirés de cette étude, les couples d'amorces n'étant pas
 3186 suffisamment efficaces pour cette technique. Le gène *actine* a également été retiré en raison de
 3187 son instabilité entre les conditions contrôle et infecté.
- 3188

Nom de l'amorce	Séquence 5'-3'	Taille du fragment attendu (pb)
rpl-18 F	GTATCTTGAAAGCCGGTGG	180
rpl-18 R	CATACGTGAGGTCTAAGGGC	100
relish F	GCACAAGCGACGTTTAACAGT	214
relish R	CGCCTTGGCATTTCTCGTAC	214
dorsal F	GCATACCCGGTGTCAATAGC	202
dorsal R	ACAACCATATTTCCCGATGG	202
bicarinaline F	GTTGGTGCTTGCCATAATCC	190
bicarinaline R	TTTAACCTTGCCCCATGGTA	180
<i>p17 F</i>	GATGCTGATGCTGCTGCTT	190
p17 R	GTTGTTGCAGTCCTCCAGT	180
u3-Tb1a F	TCGTAGGTCTAAGTGGCTCA	155
u3-Tb1a R	TGGTAGACTCATCAAGCCCG	155
u8-Tb1a F	TGGCAATCATGTACGCACC	150
u8-Tb1a R	ATCCCATGAATCCTTTTACTGCG	130
u9-Tb1a F	ACCATATACGCACCCCAAGT	159
u9-Tb1a R	CCCAAAGCCATTTTCAAACCC	138

3189 **Tableau IX :** Amorces utilisée pour la qPCR.

3190

3191 Les échantillons ont été passés en triplicatas dans des plaques 384 puits avec un volume de 3192 réaction de $6 \,\mu\text{L}$ (SsoFastTM EvaGreen® Supermixes (1X final) (Biorad); amorces 3193 (FORWARD & REVERSE) (0,5 μ M final); 2 μ L d'ADN).

3194Les plaques 384 puits ont été analysées sur l'appareil ViiA7 (Applied Biosystem) sur la3195plateforme Génome et Transcriptome (GeT) du Génopôle de Toulouse. Les cycles seuils (C_T 3196pour Cycle Threshold) de chaque échantillon, déterminant le début de la phase exponentielle3197de l'amplification de la PCR, ont été évalués grâce au logiciel QuantStudioTM (v 1.3) (Applied3198Biosystems, Thermofisher Scientific).

3199 Les ratios d'expression de nos gènes d'intérêt ont ensuite été calculés grâce à la méthode 3200 du $2^{-\Delta\Delta C_T}$ (Livak & Schmittgen, 2001). Il s'agit d'une méthode de quantification relative qui 3201 permet de calculer les changements relatifs d'expression de gènes d'intérêts par rapport à un ou 3202 plusieurs gènes de références, ici *rpl-18*, selon les conditions testées et cela sans réaliser de
3203 droite standard et sans connaissance de la valeur absolue du nombre de copies dans chaque 3204 échantillon. La formule pour calculer le $2^{-\Delta\Delta C_T}$, c'est-à-dire le ratio relatif d'expression d'un 3205 gène d'intérêt pour notre condition infecté par rapport à notre condition contrôle, est la 3206 suivante :

3207

$$3208 \qquad 2^{-\Delta\Delta C_T} = 2^{-\binom{c_{T \text{ gène } d' \text{ intérêt}}^{-C_T \text{ gène } \text{ de référence}}{\underline{c}_{\text{chantillon}}} - \binom{c_{T \text{ mean } \text{ gène } d' \text{ intérêt}^{-C_T \text{ mean gène } \text{ de référence}}}{\underline{c}_{\text{contrôle}}}$$

32093210

Où C_{Tmean} est la moyenne des C_T obtenus pour une condition donnée.

3211

3212 Les conditions de normalité de d'homoscédasticité n'étant pas respectées, le traitement 3213 statistique des données a été réalisé via des tests de Mann-Whitney entre les ratios d'expression 3214 de nos deux conditions par gène et par tissus. Une comparaison des C_T des différents gènes 3215 entre les deux conditions a également été réalisée grâce à des tests de Mann-Whitney. Ces tests 3216 ont été effectués à l'aide du logiciel R (v 4.0.0) (R Core Team, 2017).

- 3217
- 3218

> <u>Protocole de digital droplet PCR (ddPCR)</u>

La technique de la dd-PCR consiste en la séparation préalable de l'échantillon en gouttelettes (Hindson et al., 2011). Chaque gouttelette soutient une amplification de la molécule cible qu'elle contient. A la fin de la réaction, chaque gouttelette est analysée pour déterminer la fraction de gouttes « PCR-positives », déterminant ainsi la concentration d'ADN cible dans l'échantillon. Cette technique permet donc une quantification absolue en fin de réaction PCR, tout en laissant la possibilité de s'affranchir d'un gène de référence et en détectant les faibles variations d'expressions génétiques.

3226 Un échantillon de glandes à venin de fourmis non-infectées a été choisi comme témoin 3227 positif quant à l'expression des gènes codant les peptides ciblés. Parmi les échantillons passés en qPCR, dix échantillons par condition et par tissu ont été sélectionnés de manière aléatoire. 3228 3229 Parmi les neuf gènes testés en qPCR, cinq ont été sélectionnés. Le gène de référence rpl-18 a 3230 été testé afin de vérifier sa stabilité entre les conditions en quantification absolue. Le gène relish 3231 a été choisi en raison de son implication dans la voie IMD, connue pour réagir face aux bactéries 3232 à Gram négatif (e.g. Serratia marcescens). Les gènes p17, u3-Tb1a et u8-Tb1a ont été 3233 sélectionnés car ils étaient exprimés dans la majorité des échantillons testés en qPCR, 3234 contrairement aux gènes bicarinaline et u9-Tb1a.

3235Les échantillons ont été passés dans des plaques 96 puits avec un volume de réaction de3236 $22 \ \mu L \ (QX200^{TM} \ ddPCR^{TM} \ EvaGreen \ Supermix \ (1X \ final) \ (Bio-Rad) ; amorces \ (FORWARD)3237& REVERSE) \ (0,1 \ \mu M \ final) ; 2,2 \ \mu L \ d'ADN). Les couples d'amorces utilisées pour quantifier3238l'expression des gènes$ *rpl-18, relish, p17, u3-Tb1a*et*u8-Tb1a*sont les mêmes que ceux utilisés3239pour la qPCR (Tableau IX).

Les plaques 96 puits ont été analysées sur l'appareil Q200X AutoDG (Bio-Rad) sur la
plateforme Génome et Transcriptome (GeT) du Génopôle de Toulouse. Le nombre de copies
d'ADN obtenu par gène a été évalué grâce au logiciel QuantasoftTM (v 1.7).

Les conditions de normalité de d'homoscédasticité n'étant pas respectées, le traitement statistique des données a été réalisé *via* des tests de Mann-Whitney pour comparer les nombres de copies d'ADN détectées dans les échantillons de deux conditions par gène et par tissus. Ces tests ont été effectués à l'aide du logiciel R (v 4.0.0) (R Core Team, 2017).

- 3247
- 3248

4.4.3. <u>Etude au niveau protéique</u>

Afin de vérifier l'expression des gènes codant pour la Bicarinaline et le P17 au niveau protéique suite à un challenge bactérien, un protocole d'immunohistochimie indirecte a été appliqué sur les tissus d'abdomens d'individus sains et infectés par *Serratia marcescens*.

3252 Treize ouvrières T. bicarinatum ont été isolées par condition (i.e. contrôle et infecté) 3253 puis infectées par voie orale comme décrit dans la partie 4.4.1. Vingt-quatre heure après 3254 infection, les fourmis ont été disséquées comme précédemment décrit dans la partie 4.2. Les 3255 abdomens ont été isolés du reste du corps et les tergites T1 et T2 ont été retirés. Un total de cinq échantillons a été constitué, contenant chacun 5 abdomens de T. bicarinatum : un témoin relatif 3256 3257 à l'anticorps secondaire et un échantillon par peptide et par condition. Chaque échantillon a été directement placé dans 1 mL de solution de fixation avant de procéder au protocole 3258 3259 d'immunohistochimie indirecte décrit dans la partie 4.3.2. Cette expérimentation a été effectuée 3260 deux fois. Au total, 52 fourmis ont été nécessaires à sa réalisation.

3261 Pour chaque type de tissus, cinq photos par organe ciblé et par échantillon ont été réalisées grâce à l'appareil Cytation 1 (Biotek) et au logiciel Gen5TM. Les intensités lumineuses 3262 3263 ont été mesurées grâce au logiciel ImageJTM pour chaque organe en prenant en compte leur surface. Pour chaque tissu, la valeur réelle d'intensité lumineuse a été calculée en lui 3264 3265 soustrayant la valeur de l'intensité lumineuse des organes correspondants dans le témoin de 3266 fluorescence des anticorps secondaires. Les intensités lumineuses corrigées des conditions 3267 contrôle et infecté ont été comparées grâce au test t de Student. Ces tests ont été effectués à 3268 l'aide du logiciel R (v 4.0.0) (R Core Team, 2017).

3269

- 3270 4.5. Protocoles utilisés lors de l'étude préliminaire
- 3271

4.5.1. Première localisation des transcrits codant pour la Bicarinaline et le P17 en 3272 dehors de l'abdomen

3273 Dix ouvrières de *T. bicarinatum* ont été isolées en boîte de Pétri pendant 24h puis disséquées 3274 comme précédemment décrit dans la partie 4.2. Six types de tissus ont été isolés et placés par 3275 lots de 5 : des appareils vulnérants (glandes à venin et réservoir), des mésentérons, des tubes de 3276 Malpighi, des rectums, des corps gras et des abdomens dépourvus d'appareil vulnérant.

- 3277
- 3278 4.5.2. Première estimation de la réponse des gènes bicarinaline et p17 suite à une 3279 *infection bactérienne*

3280 Soixante fourmis ont été isolées et réparties en deux lots (i.e. contrôle et infecté), puis 3281 infectées comme précédemment décrit dans la partie 4.4.1. L'infection a été répétée les deux 3282 jours suivants, permettant ainsi de réaliser une infection en continu sur 72h. Aucune mortalité 3283 n'a été observée au cours de cette partie de l'étude.

- 3284 Des dissections ont été effectuées comme décrit dans la partie 4.2 sur 3 fourmis de 3285 chaque condition, et ce 24h, 48h et 72h après le début de l'infection. Deux types de tissus ont 3286 été isolés et placés par lots de trois pour chaque condition : des glandes à venin et des abdomens 3287 dépourvus d'appareil vulnérant. Un total de quatre échantillons a donc été obtenu par pas de 3288 temps. Cette expérimentation a été répétée 3 fois, nécessitant un total de 54 fourmis pour sa 3289 réalisation.
- 3290
- 3291

4.5.3. Extraction, traitement de l'ARN et rétrotranscription

3292 Les extractions et traitements de l'ARN ont été réalisés immédiatement après les 3293 dissections, et les rétrotranscriptions ont été effectuées sur 50 ng d'ARNs totaux comme 3294 précédemment décrit dans la partie 4.3.1.

- 3295
- 3296

4.5.4. Amplification par PCR

3297 Des PCRs ont été réalisée à 60°C pendant 35 cycles sur les échantillons des deux 3298 expérimentations. La première expérience nous a permis d'obtenir une estimation plus précise 3299 des lieux d'expression des gènes codant la Bicarinaline et le P17, tandis que la seconde 3300 expérimentation nous a permis d'effectuer une première évaluation de la réponse de ces gènes 3301 face à une infection bactérienne.

- Quatre gènes ont été testés dans le cadre de la première manipulation : *rpl-18* et *actine*(i.e. gènes de référence), *bicarinaline* et *p17*. Les mêmes gènes ont été testés dans le cadre de
 la seconde expérimentation, plus deux gènes impliqués dans les voies Toll et IMD : *dorsal* et *relish*. Les couples d'amorces utilisés sont répertoriés dans le tableau X.
- 3306

Amorces	Séquences	Taille des fragments attendus
<i>rpL-18</i> F	GTATCTTGAAAGCCGGTGG	190 mb
<i>rpL-18</i> R	CATACGTGAGGTCTAAGGGC	180 pb
<i>actine</i> F	GGCTTCTTCCTCCAGTTTGG	102 -1
actine R	TACAAGTCCTTGCGGATGTC	192 po
dorsal F	GCATACCCGGTGTCAATAGC	
dorsal R	ACAACCATATTTCCCGATGG	202 рв
relish F	GGCGCTGATCCGTATTTAAG	1061
relish R	TGTCATCGGAAGTCTGACCA	196 pb
<i>bicarinaline</i> F	GTTGGTGCTTGCCATAATCC	1001
bicarinaline R	TTTAACCTTGCCCCATGGTA	180 pb
<i>p17</i> F	GATGCTGATGCTGCTGCTT	100 1
<i>p17</i> R	GTTGTTGCAGTCCTCCAGT	180 pb

3307 **Tableau X** : Couples d'amorces utilisés pour les PCR et la qPCR.

- 3308
- 3309

3310 *4.5.5. Protocole de qPCR*

L'expression des gènes de l'immunité et ceux codant les peptides Bicarinaline et P17 a également été évaluée par qPCR, selon le protocole décrit dans la partie *4.4.2*. Les mêmes gènes ont été testés, à l'exception de *relish* dont les couples d'amorces n'étaient pas suffisamment efficaces pour cette technique. Ainsi, afin d'avoir un représentant de la voie IMD, le gène *pgrple*, codant une protéine de reconnaissance du peptidoglycane, composé principal des membranes bactériennes et activatrice de la voie IMD, a été utilisé par la suite (Bier and Guichard 2012). Le couple d'amorces utilisé est répertorié dans le tableau XI.

3318

3319 Tableau XI : Couple d'amorces utilisé pour le gène *pgrp-le* en qPCR.

Amorces	Séquences	Taille du fragment attendu
<i>pgrp-le</i> F	ATAACATTGGCGGAGCTCAA	218 ph
<i>pgrp-le</i> R	ACCATCAACCGATGGAATTT	218 pb

Conclusion générale / Perspectives

- 3320
- 3321

Les objectifs généraux de ce travail de thèse consistaient en (i) l'apport de premiers aperçus sur la diversité moléculaire des toxines peptidiques contenues dans les venins de fourmis myrmicines, et (ii) l'exploration du lien potentiel entre les peptides du venin et le système immunitaire inné de la fourmi *T. bicarinatum* à titre individuel.

3326 Afin de répondre au premier objectif, la caractérisation des peptidomes des venins de 3327 sept fourmis appartenant à la sous-famille des Myrmicinae et d'une fourmi appartenant à la 3328 sous-famille des Pseudomyrmecinae а été effectuée au moyen d'approches 3329 protéotranscriptomiques. Ces travaux ont mené à l'identification de 100 précurseurs de toxines 3330 peptidiques (i.e. 9 pseudomyrmecitoxines et 91 myrmicitoxines). Les compositions des venins étudiés sont dominées par des peptides linéaires, cationiques et amphiphiles, excepté pour la 3331 3332 fourmi myrmicine Daceton armigerum dont le venin est composé exclusivement de peptides 3333 dimériques. La présence de toxines dimériques a également été notée pour Tetraponera 3334 aethiops (Pseudomyrmecinae). Les venins de fourmis myrmicines contiennent aussi plusieurs 3335 peptides à ponts disulfures intracaténaires (i.e. 1 à 3). Sur la base de leurs séquences matures, 3336 les myrmicitoxines ont été classées en 37 familles. Certaines d'entre elles ont été observées 3337 dans la plupart des venins de fourmis myrmicines caractérisées (i.e. U_3 , U_{17}), suggérant 3338 l'importance de leurs rôles fonctionnels. Ces résultats nous ont permis de mettre en évidence 3339 l'hétérogénéité de la composition en toxines peptidiques des venins des fourmis myrmicines 3340 étudiées en termes de diversité structurale (Figure 53), suggérant l'existence d'un compromis entre le nombre de famille de toxines peptidiques matures présentes dans un venin donné et la 3341 3342 complexité structurale de ces dernières. Il est également à noter que les compositions des venins 3343 pourraient varier selon leurs contextes majoritaires d'utilisation (i.e. défense et/ou prédation). 3344 La diversité des compositions de venins de fourmis myrmicines semble donc résulter d'une 3345 multitude de paramètres, soulignant le besoin d'effectuer davantage d'études intégratives sur 3346 des échantillonnages rationnels et de déterminer les activités biologiques des toxines. 3347 Cependant, cette détermination d'activité biologique devrait prendre en compte un potentiel 3348 effet synergique des peptides contenus dans un même venin.

3349

Figure 53 : Caractéristiques structurales des familles de toxines peptidiques matures caractérisées dans les
 venins de fourmis myrmicines et pseudomyrmecine.

3352 L'analyse des séquences signal des précurseurs de myrmicitoxines a permis leur 3353 répartition en 8 superfamilles de précurseurs. Nous avions également montré que les séquences 3354 signal et régions propeptides des toxines des venins de Tetraponera aethiops, Odontomachus 3355 monticola (Ponerinae), Myrmecia pilosula et M. gulosa (Myrmeciinae) montraient des 3356 similarités de séquence avec celles des précurseurs de toxines de la superfamille A chez 3357 Tetramorium bicarinatum (Barassé et al., 2019; Touchard et al., 2018). Robinson et al. (2018) 3358 ont de plus montré que les précurseurs des toxines peptidiques du venin de M. gulosa possèdent 3359 des séquences signal similaires à celles de peptides contenus dans les venins d'Hyménoptères 3360 autres que les Formicidae, tout en montrant des séquences matures divergentes et exerçant donc 3361 potentiellement des activités biologiques différentes. Ces mêmes auteurs ont ainsi émis 3362 l'hypothèse que la majorité des toxines de venins d'Hyménoptères aculéates appartiendraient à 3363 une même famille multigénique (Robinson et al., 2018). Des données génomiques sont 3364 néanmoins nécessaires pour confirmer cette hypothèse, ou à minima des analyses sur les 3365 séquences nucléotidiques des transcrits codant pour ces précurseurs (Walker, 2020).

3366

Afin de répondre au second objectif, des techniques de biologie moléculaire (i.e. RT-PCR, qPCR et ddPCR) ont été employées dans le but de vérifier l'expression des gènes codant des toxines du venin de *Tetramorium bicarinatum* en dehors du système vulnérant, ainsi que d'évaluer leur réponse suite à une infection bactérienne par voie orale. La présence des peptides Bicarinaline et P17 a également été évaluée par immunohistochimie indirecte dans les différents

3372 organes composant l'abdomen de la fourmi suite à ce même challenge immunitaire. Ces travaux 3373 ont mené à la localisation des transcrits codant les peptides testés dans des organes connus pour 3374 être impliqués dans l'immunité innée des insectes (i.e. mésentérons, tubes de Malpighi, corps 3375 gras). La Bicarinaline et le P17 ont également été localisés dans ces organes, notamment dans 3376 un des deux types cellulaires composant le corps gras de notre modèle biologique (i.e. oenocytes). L'immunohistochimie indirecte nous a de plus permis de mettre en évidence une 3377 3378 production de ces peptides dans les deux types cellulaires du corps gras suite à une infection 3379 bactérienne. Nous posons également l'hypothèse que ces peptides seraient sécrétés par les tubes 3380 de Malpighi en cas de challenge immunitaire, dans la mesure où les signaux traduisant la 3381 présence des peptides dans ces organes présentaient moins d'intensité chez les individus 3382 infectés.

3383 Aucune réponse nette des gènes codant les peptides du venin n'a en revanche été décelée *via* l'analyse traditionnelle des résultats de RT-qPCR (i.e. $2^{-\Delta\Delta C}$) suite au challenge 3384 3385 immunitaire. Nous avons montré par la suite que le gène de référence utilisé (i.e. rpl-18) n'était 3386 pas stable grâce à la technique plus sensible de ddPCR. De la même manière, cette technique 3387 ne nous a pas permis d'observer de surexpression significative des gènes codant les peptides en 3388 raison d'une trop grande variabilité entre les échantillons d'une même condition. Outre le 3389 recours à des méthodes in vitro basées sur la culture primaire des cellules du corps gras, le 3390 séquençage du génome de T. bicarinatum (actuellement en cours) apparaît comme essentiel 3391 pour la poursuite de cette étude.

3392 Suite à une annotation complète, ces données nous donneraient en effet des informations 3393 sur la régulation des gènes codant les peptides testés (i.e. promoteurs), nous permettant 3394 potentiellement de les relier à une voie de signalisation cellulaire. Il sera également possible 3395 d'identifier plus précisément les composants de l'immunité innée de cette fourmi, tels que les 3396 protéines impliquées dans les voies immunitaires ainsi que les Host-Defense-Peptides circulant 3397 dans l'hémolymphe. Des approches plus ciblées seront ensuite envisageables telles que la 3398 technique du RNAseq en différentiel sur différent types de tissus.

L'acquisition du génome nous permettra de plus de regarder la position des gènes codant
les toxines peptidiques du venin de *T. bicarinatum*, rendant également possible la détermination
des mécanismes évolutifs impliqués dans leur diversification.

3403	Références bibliographiques
3404	Aanen, D. K. (2018). Social Immunity: the disposable individual. Current Biology, 28(7),
3405	R322-R324. https://doi.org/10.1016/j.cub.2018.02.050
3406	Agaisse, H., & Perrimon, N. (2004). The roles of JAK/STAT signaling in Drosophila immune
3407	responses. Immunological Reviews, 198(1), 72-82. https://doi.org/10.1111/j.0105-
3408	2896.2004.0133.x
3409	Aili, S. R., Touchard, A., Escoubas, P., Padula, M. P., Orivel, J., Dejean, A., & Nicholson, G.
3410	M. (2014). Diversity of peptide toxins from stinging ant venoms. Toxicon, 92, 166-178.
3411	https://doi.org/10.1016/j.toxicon.2014.10.021
3412	Aili, S. R., Touchard, A., Hayward, R., Robinson, S. D., Pineda, S. S., Lalagüe, H.,
3413	Nicholson, G. M. (2020). An integrated proteomic and transcriptomic analysis reveals the
3414	venom complexity of the bullet ant Paraponera clavata. Toxins, 12(324).
3415	https://doi.org/10.3390/toxins12050324
3416	Akbari, R., Hakemi Vala, M., Hashemi, A., Aghazadeh, H., Sabatier, J. M., & Pooshang
3417	Bagheri, K. (2018). Action mechanism of melittin-derived antimicrobial peptides, MDP1
3418	and MDP2, de novo designed against multidrug resistant bacteria. Amino Acids, 50(9),
3419	1231–1243. https://doi.org/10.1007/s00726-018-2596-5
3420	Ali Mohammadie Kojour, M., Han, Y. S., & Jo, Y. H. (2020). An overview of insect innate
3421	immunity. Entomological Research, 50, 282–291. https://doi.org/10.1111/1748-5967
3422	Allcock, A. L., Arbuckle, K., Baracchi, D., Caruana, N., Casewell, N. R., Cooke, I. R., Zhu,
3423	S. (2017). Evolution of venomous animals and their toxins. (P. Gopalakrishnakone & A.
3424	Malhotra, Eds.). Springer Nature. Retrieved from http://www.springer.com/series/13330
3425	Almagro Armenteros, J. J., Tsirigos, K. D., Sønderby, C. K., Petersen, T. N., Winther, O.,
3426	Brunak, S., Nielsen, H. (2019). SignalP 5.0 improves signal peptide predictions using
3427	deep neural networks. Nature Biotechnology, 37(4), 420-423.
3428	https://doi.org/10.1038/s41587-019-0036-z
3429	Arbuckle, K. (2017). Evolutionary context of venomous animals. In P. Gopalakrishnakone &
3430	A. Malhotra (Eds.), Evolution of Venomous Animals and Their Toxins (Toxinology, pp.
3431	1-36). Dordrecht: Springer.
3432	Ashwood, L. M., Norton, R. S., Undheim, E. A. B., Hurwood, D. A., & Prentis, P. J. (2020).
3433	Characterising functional venom profiles of Anthozoans and Medusozoans within their
3434	ecological context. Marine Drugs, 18(202). https://doi.org/10.3390/md18040202
3435	Babb, P. L., Lahens, N. F., Correa-Garhwal, S. M., Nicholson, D. N., Kim, E. J., Hogenesch, J.

- B., ... Voight, B. F. (2017). The *Nephila clavipes* genome highlights the diversity of spider
 silk genes and their complex expression. *Nature Genetics*, 49(6), 895–903.
 https://doi.org/10.1038/ng.3852
- Bagnall, N. H., & Kotze, A. C. (2010). Evaluation of reference genes for real-time PCR
 quantification of gene expression in the Australian sheep blowfly, *Lucilia cuprina*. *Medical and Veterinary Entomology*, 24(2), 176–181. https://doi.org/10.1111/j.13652915.2010.00866.x
- Bang, S. (2019). JAK/STAT signaling in insect innate immunity. *Entomological Research*, 47.
 https://doi.org/10.1111/1748-5967
- Baracchi, D., Francese, S., & Turillazzi, S. (2011). Beyond the antipredatory defence: honey
 bee venom function as a component of social immunity. *Toxicon*, 58(6–7), 550–557.
 https://doi.org/10.1016/j.toxicon.2011.08.017
- Baracchi, D., & Tragust, S. (2020). Venom as a component of external immune defense in
 Hymenoptera. In *Evolution of Venomous Animals and Their Toxins*.
- Barassé, V., Touchard, A., Téné, N., Tindo, M., Kenne, M., Klopp, C., ... Treilhou, M. (2019).
 The peptide venom composition of the fierce stinging ant *Tetraponera aethiops*(Formicidae: Pseudomyrmecinae). *Toxins*, *11*(732).
 https://doi.org/10.3390/toxins11120732
- Baumann, K., Dashevsky, D., Sunagar, K., & Fry, B. (2018). Scratching the surface of an itch:
 molecular evolution of Aculeata venom allergens. *Journal of Molecular Evolution*, 86(7),
 484–500. https://doi.org/10.1007/s00239-018-9860-x
- Beeton, C., Pennington, M. W., Wulff, H., Singh, S., Nugent, D., Crossley, G., ... Chandy, K.
 G. (2005). Targeting effector memory T cells with a selective peptide inhibitor of Kv1.3
 channels for therapy of autoimmune diseases. *Molecular Pharmacology*, 67(4), 1369–
 1381. https://doi.org/10.1124/mol.104.008193
- Benmoussa, K., Authier, H., Prat, M., AlaEddine, M., Lefèvre, L., Rahabi, M. C., ... Coste, A.
 (2017). P17, an original host defense peptide from ant venom, promotes antifungal
 activities of macrophages through the Induction of C-type lectin receptors dependent on
- 3464 LTB4-mediated PPARγ activation. *Frontiers in Immunology*, 8(November).
 3465 https://doi.org/10.3389/fimmu.2017.01650
- Bier, E., & Guichard, A. (2012). Deconstructing host-pathogen interactions in *Drosophila*. *Disease Models & Mechanisms*, 5(1), 48–61. https://doi.org/10.1242/dmm.000406
- Blaimer, B. B., Ward, P. S., Schultz, T. R., Fisher, B. L., & Brady, S. G. (2018). Paleotropical
 diversification dominates the evolution of the hyperdiverse ant tribe Crematogastrini

- 3470 (Hymenoptera: Formicidae). Insect Systematics and Diversity, 2(5).
 3471 https://doi.org/10.1093/isd/ixy013
- 3472 Borges, A., Lomonte, B., Angulo, Y., Acosta, H., Patiño, D., Pascale, J. M., ... Caro-lópez, J.
- A. (2020). Venom diversity in the neotropical scorpion genus *Tityus*: implications for
 antivenom design emerging from molecular and immunochemical analyses across
 endemic areas of scorpionism. *Acta Tropica*, 204, 105346.
 https://doi.org/10.1016/j.actatropica.2020.105346
- Borowiec, M. L., Moreau, C. S., & Rabeling, C. (2020). Ants: phylogeny and classification. In
 Starr C. (Ed.), *Encyclopedia of Social Insects* (Springer,). https://doi.org/10.1007/978-3319-90306-4 155-1
- Bouzid, W., Verdenaud, M., Klopp, C., Ducancel, F., Noirot, C., & Vétillard, A. (2014). De
 Novo sequencing and transcriptome analysis for *Tetramorium bicarinatum*: a
 comprehensive venom gland transcriptome analysis from an ant species. *BMC Genomics*,
 15(987). https://doi.org/10.1186/1471-2164-15-987
- Brady, D., Grapputo, A., Romoli, O., & Sandrelli, F. (2019). Insect cecropins, antimicrobial
 peptides with potential therapeutic applications. *International Journal of Molecular Sciences*, 20(23). https://doi.org/10.3390/ijms20235862
- Branstetter, M. G. (2012). Origin and diversification of the cryptic ant genus *Stenamma*Westwood (Hymenoptera: Formicidae), inferred from multilocus molecular data,
 biogeography and natural history. *Systematic Entomology*, *37*(3), 478–496.
 https://doi.org/10.1111/j.1365-3113.2012.00624.x
- Brütsch, T., Jaffuel, G., Vallat, A., Turlings, T. C. J., & Chapuisat, M. (2017). Wood ants
 produce a potent antimicrobial agent by applying formic acid on tree-collected resin. *Ecology and Evolution*, 7(7), 2249–2254. https://doi.org/10.1002/ece3.2834
- Cabau, C., Escudié, F., Djari, A., Guiguen, Y., Bobe, J., & Klopp, C. (2017). Compacting and
 correcting Trinity and Oases RNA-Seq de novo assemblies. *PeerJ*, 5, e2988.
 https://doi.org/10.7717/peerj.2988
- Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T.
 L. (2009). BLAST+: architecture and applications. *BMC Bioinformatics*, 10(421).
 https://doi.org/10.1186/1471-2105-10-421
- Casewell, N. R., Wüster, W., Vonk, F. J., Harrison, R. A., & Fry, B. G. (2013). Complex
 cocktails: the evolutionary novelty of venoms. *Trends in Ecology and Evolution*, 28(4),
 219–229. https://doi.org/10.1016/j.tree.2012.10.020
- 3503 Charroux, B., & Royet, J. (2010). Drosophila immune response: from systemic antimicrobial

- peptide production in fat body cells to local defense in the intestinal tract. *Fly*, 4(1), 40–
 47. https://doi.org/10.4161/fly.4.1.10810
- Cheng, D., Zhang, Z., He, X., & Liang, G. (2013). Validation of reference genes in *Solenopsis invicta* in different developmental stages, castes and tissues. *PLoS ONE*, 8(2), 1–6.
 https://doi.org/10.1371/journal.pone.0057718
- Chippaux, J. P., Williams, V., & White, J. (1991). Snake venom variability: methods of study,
 results and interpretation. *Toxicon*, *29*(11), 1279–1303. https://doi.org/10.1016/00410101(91)90116-9
- Clark, G. C., Casewell, N. R., Elliott, C. T., Harvey, A. L., Jamieson, A. G., Strong, P. N., &
 Turner, A. D. (2019). Friends or foes? Emerging impacts of biological toxins. *Trends in Biochemical Sciences*, *xx*, 1–15. https://doi.org/S096800041830269X
- 3515 Cologna, C. T., Cardoso, J. dos S., Jourdan, E., Degueldre, M., Upert, G., Gilles, N., ...
- Quinton, L. (2013). Peptidomic comparison and characterization of the major components
 of the venom of the giant ant *Dinoponera quadriceps* collected in four different areas of
 Brazil. *Journal of Proteomics*, *94*, 413–422. https://doi.org/10.1016/j.jprot.2013.10.017
- Cooper, D. M., Chamberlain, C. M., & Lowenberger, C. (2009). Aedes FADD: A novel death
 domain-containing protein required for antibacterial immunity in the yellow fever
 mosquito, *Aedes aegypti. Insect Biochemistry and Molecular Biology*, 39(1), 47–54.
 https://doi.org/10.1016/j.ibmb.2008.09.011
- Corporation, V. (n.d.). EPA removes bee toxicity warning statement from label of SPEAR TM
 bioinsecticide from Vestaron Corporation. Retrieved from
 https://vestaron.com/assets/vestaron beetoxicity 12.17.15.pdf
- Costa, A., Jan, E., Sarnow, P., & Schneider, D. (2009). The Imd pathway is involved in antiviral
 immune responses in *Drosophila*. *PLoS ONE*, 4(10).
 https://doi.org/10.1371/journal.pone.0007436
- Coutinho das Neves, R., Mortari, M. R., Ferroni Schwartz, E., Kipnis, A., & Junqueira-Kipnis,
 A. P. (2019). Antimicrobial and antibiofilm effects of peptides from venom of social wasp
- and scorpion on multidrug-resistant *Acinetobacter baumannii*. *Toxins*, *11*(216).
 https://doi.org/10.3390/toxins11040216
- 3533 Cremer, S. (2019). Social immunity in insects. *Current Biology*, 29(11).
 3534 https://doi.org/10.1016/j.cub.2019.03.035
- 3535 Cremer, S., Armitage, S. A. O., & Schmid-Hempel, P. (2007). Social Immunity. *Current* 3536 *Biology*, 17(16), 693–702. https://doi.org/10.1016/j.cub.2007.06.008
- 3537 Daly, N. L., & Wilson, D. (2018). Structural diversity of arthropod venom toxins. *Toxicon*, 152,

- 3538 46–56. https://doi.org/10.1016/j.toxicon.2018.07.018
- Dejean, A., Azémar, F., Céréghino, R., Leponce, M., Corbara, B., Orivel, J., & Compin, A.
 (2016). The dynamics of ant mosaics in tropical rainforests characterized using the SelfOrganizing Map algorithm. *Insect Science*, 23(4), 630–637. https://doi.org/10.1111/17447917.12208
- Dejean, A., Céréghino, R., Leponce, M., Rossi, V., Roux, O., Compin, A., ... Corbara, B.
 (2015). The fire ant *Solenopsis saevissima* and habitat disturbance alter ant communities. *Biological Conservation*, 187, 145–153. https://doi.org/10.1016/j.biocon.2015.04.012
- Dejean, A., Delabie, J. H. C., Corbara, B., Azémar, F., Groc, S., Orivel, J., & Leponce, M.
 (2012). The ecology and feeding habits of the arboreal trap-jawed ant *Daceton armigerum*. *PLoS ONE*, 7(6). https://doi.org/10.1371/journal.pone.0037683
- 3549 Dekan, Z., Headey, S. J., Scanlon, M., Baldo, B. A., Lee, T. H., Aguilar, M. I., ... Alewood, P.

3550 F. (2017). Δ -Myrtoxin-Mp1a is a helical heterodimer from the venom of the jack jumper 3551 ant that has antimicrobial, membrane-disrupting, and nociceptive activities. *Angewandte* 3552 *Chemie* - *International Edition*, 56(29), 8495–8499.

- 3553 https://doi.org/10.1002/anie.201703360
- Dodou Lima, H. V., de Paula Calvacante, C. S., & Radis-Baptista, G. (2020). Antifungal in
 vitro activity of Pilosulin- and Ponericin-Like Peptides from the giant ant *Dinoponera quadriceps* and synergistic effects with antimycotic drugs. *Antibiotics*, 9(354).
 https://doi.org/10.3390/antibiotics9060354
- 3558 Dos Santos-Pinto, J. R. A., Perez-Riverol, A., Lasa, A. M., & Palma, M. S. (2018). Diversity
 3559 of peptidic and proteinaceous toxins from social Hymenoptera venoms. *Toxicon*, 148,
 3560 172–196. https://doi.org/10.1016/j.toxicon.2018.04.029
- Dos Santos Pinto, J. R. A., Fox, E. G. P., Saidemberg, D. M., Santos, L. D., Da Silva
 Menegasso, A. R., Costa-Manso, E., ... Palma, M. S. (2012). Proteomic view of the venom
 from the fire ant *Solenopsis invicta* buren. *Journal of Proteome Research*, *11*(9), 4643–
 4653. https://doi.org/10.1021/pr300451g
- Drukewitz, S. H., Bokelmann, L., Undheim, E. A. B., & von Reumont, B. M. (2019). Toxins
 from scratch? Diverse, multimodal gene origins in the predatory robber fly *Dasypogon diadema* indicate a dynamic venom evolution in dipteran insects. *GigaScience*, 8(7), 1–
- 3568 13. https://doi.org/10.1093/gigascience/giz081
- Drukewitz, S. H., Fuhrmann, N., Undheim, E. A. B., Blanke, A., Giribaldi, J., Mary, R., ... von
 Reumont, B. M. (2018). A dipteran's novel sucker punch: evolution of arthropod atypical
- venom with a neurotoxic component in robber flies (Asilidae, Diptera). *Toxins*, 10(1).

3572 https://doi.org/10.3390/toxins10010029

- 3573 Dufton, M. J. (1992). Venomous mammals. *Pharmacology and Therapeutics*, 53(2), 199–215.
 3574 https://doi.org/10.1016/0163-7258(92)90009-O
- 3575 Duraisamy, K., Singh, K., KUmar, M., Lefranc, B., Bonnafé, E., Treilhou, M., ... Chow, B. K.
 3576 C. (2020). The novel venom peptide P17 induces chemotactic recruitment and
 3577 differentiation of monocytes into macrophages via alternative mast cell activation. *Journal*
- 3578 of Chemical Information and Modeling. (in submission)
- Dutertre, S., Jin, A. H., Vetter, I., Hamilton, B., Sunagar, K., Lavergne, V., ... Lewis, R. J.
 (2014). Evolution of separate predation-and defence-evoked venoms in carnivorous cone
 snails. *Nature Communications*, *5*. https://doi.org/10.1038/ncomms4521
- Ekengren, S., & Hultmark, D. (1999). Drosophila cecropin as an antifungal agent. *Insect Biochemistry and Molecular Biology*, 29(11), 965–972. https://doi.org/10.1016/S09651748(99)00071-5
- Evans, J. D., Aronstein, K., Chen, Y. P., Hetru, C., Imler, J. L., Jiang, H., ... Hultmark, D.
 (2006). Immune pathways and defence mechanisms in honey bees *Apis mellifera*. *Insect Molecular Biology*, *15*(5), 645–656. https://doi.org/10.1111/j.1365-2583.2006.00682.x
- Ferrandon, D., Jung, A. C., Criqui, M. C., Lemaitre, B., Uttenweiler-Joseph, S., Michaut, L.,
 ... Hoffmann, J. A. (1998). A drosomycin-GFP reporter transgene reveals a local immune
 response in *Drosophila* that is not dependent on the Toll pathway. *EMBO Journal*, 17(5),
- 3591 1217–1227. https://doi.org/10.1093/emboj/17.5.1217
- Fox, E. G. P., Bueno, O. C., Yabuki, A. T., de Jesus, C. M., Solis, D. R., Rossi, M. L., & de
 Lima Nogueira, N. (2010). General morphology and ultrastructure of the venom apparatus
 and convoluted gland of the fire ant, *Solenopsis saevissima. Journal of Insect Science*, *10*(1), 1–11. https://doi.org/10.1673/031.010.2401
- Frederickson, M. E., Greene, M. J., & Gordon, D. M. (2005). Devil's gardens' bedevilled by
 ants. *Nature*, 437.
- Fry, B. (2005). From genome to "venome": molecular origin and evolution of the snake venom
 proteome inferred from phylogenetic analysis of toxin sequences and related body
 proteins. *Genome Research*, 15(3), 403–420. https://doi.org/10.1101/gr.3228405
- 3601 Fry, B. G., Roelants, K., Champagne, D. E., Scheib, H., Tyndall, J. D. A., King, G. F., ... de la
- 3602 Vega, R. C. R. (2009). The toxicogenomic multiverse: convergent recruitment of proteins
- into animal venoms. *Annual Review of Genomics and Human Genetics*, 10(1), 483–511.
- 3604 https://doi.org/10.1146/annurev.genom.9.081307.164356
- 3605 Gao, B., Dalziel, J., Tanzi, S., & Zhu, S. (2018). Meucin-49, a multifunctional scorpion venom

- 3606 peptide with bactericidal synergy with neurotoxins. *Amino Acids*, 50(8), 1025–1043.
 3607 https://doi.org/10.1007/s00726-018-2580-0
- Gao, B., Tian, C., & Zhu, S. (2007). Inducible antibacterial response of scorpion venom gland.
 Peptides, 28(12), 2299–2305. https://doi.org/10.1016/j.peptides.2007.10.004
- 3610 Gathalkar, G., & Sen, A. (2018). Foraging and predatory activities of ants. In *The Complex*3611 *World of Ants* (pp. 51–70). https://doi.org/10.5772/intechopen.78011
- Geng, T., Lv, D. D., Huang, Y. X., Hou, C. X., Qin, G. X., & Guo, X. J. (2016). JAK/STAT
 signaling pathway-mediated immune response in silkworm (*Bombyx mori*) challenged by *Beauveria bassiana. Gene*, 595(1), 69–76. https://doi.org/10.1016/j.gene.2016.09.043
- Gouy, M., Guindon, S., & Gascuel, O. (2010). SeaView version 4: a multiplatform graphical
 user interface for sequence alignment and phylogenetic tree building. *Molecular Biology and Evolution*, 27(2), 221–224. https://doi.org/10.1093/molbev/msp259
- 3618 Groark, K. P. (1996). Ritual and therapeutic use of "hallucinogenic" harvester ants 3619 (*Pogonomyrmex*) in native south-central California. *Journal of Ethnobiology*, 16(1), 1–29.
- Hamilton, C., & Bulmer, M. S. (2012). Molecular antifungal defenses in subterranean termites:
 RNA interference reveals in vivo roles of termicins and GNBPs against a naturally
 encountered pathogen. *Developmental & Comparative Immunology*, *36*(2), 372–377.
 https://doi.org/10.1016/j.dci.2011.07.008
- Hanson, M. A., & Lemaitre, B. (2020). New insights on *Drosophila* antimicrobial peptide
 function in host defense and beyond. *Current Opinion in Immunology*, 62, 22–30.
 https://doi.org/10.1016/j.coi.2019.11.008
- Hedengren-Olcott, M., Olcott, M. C., Mooney, D. T., Ekengren, S., Geller, B. L., & Taylor, B.
 J. (2004). Differential activation of the NF-kB-like factors Relish and Dif in *Drosophila melanogaster* by fungi and Gram-positive bacteria. *Journal of Biological Chemistry*,
 279(20), 21121–21127. https://doi.org/10.1074/jbc.M313856200
- Heep, J., Klaus, A., Kessel, T., Seip, M., Vilcinskas, A., & Skaljac, M. (2019). Proteomic
 analysis of the venom from the ruby ant *Myrmica rubra* and the isolation of a novel
 insecticidal decapeptide. *Insects*, *10*(42). https://doi.org/10.3390/insects10020042
- 3634 Heep, J., Skaljac, M., Grotmann, J., Kessel, T., Seip, M., Schmidtberg, H., & Vilcinskas, A.
 3635 (2019). Identification and functional characterization of a novel insecticidal decapeptide
- 3636
 from the myrmicine ant Manica rubida. Toxins, 11(10), 1–17.

 3637
 https://doi.org/10.3390/toxins11100562
- Helmkampf, M., Mikheyev, A. S., Kang, Y., Fewell, J., & Gadau, J. (2016). Gene expression
 and variation in social aggression by queens of the harvester ant *Pogonomyrmex*

- 3640 *californicus. Molecular Ecology*, *25*(15), 3716–3730. https://doi.org/10.1111/mec.13700
- 3641 Himaya, S. W. A., & Lewis, R. J. (2018). Venomics-accelerated cone snail venom peptide
- 3642 discovery. International Journal of Molecular Sciences, 19(788).
 3643 https://doi.org/10.3390/ijms19030788
- 3644 Hindson, B. J., Ness, K. D., Masquelier, D. A., Belgrader, P., Heredia, N. J., Makarewicz, A.
- J., ... Colston, B. W. (2011). High-throughput droplet digital PCR system for absolute
 quantitation of DNA copy number. *Analytical Chemistry*, 83(22), 8604–8610.
 https://doi.org/10.1021/ac202028g
- 3648 Illumina Inc. (2011). Quality scores for next-generations sequencing: assessing sequencing
 3649 accuracy using Phred quality scoring. Retrieved July 30, 2020, from
 3650 https://www.illumina.com/content/dam/illumina-
- 3651 marketing/documents/products/technotes/technote_Q-Scores.pdf
- 3652 Imler, J., & Hoffmann, J. A. (2001). Toll receptors in innate immunity. *Trends in Cellular*3653 *Biology*, 11(7), 304–311.
- Jain, M., Koren, S., Miga, K. H., Quick, J., Rand, A. C., Sasani, T. A., ... Loose, M. (2018).
 Nanopore sequencing and assembly of a human genome with ultra-long reads. *Nature Biotechnology*, *36*(4), 338–345. https://doi.org/10.1038/nbt.4060
- Jimenez, R., Ikonomopoulou, M. P., Lopez, J. A., & Miles, J. J. (2017). Immune drog discovery
 from venoms. *Toxicon*.
- Jin, A.-H., Dutertre, S., Dutt, M., Lavergne, V., Jones, A., Lewis, R., & Alewood, P. (2019).
 Transcriptomic-proteomic correlation in the predation-evoked venom of the cone snail, *Conus imperialis. Marine Drugs*, 17(3), 177. https://doi.org/10.3390/md17030177
- Johnson, S. R., Copello, J. A., Evans, M. S., & Suarez, A. V. (2010). A biochemical
 characterization of the major peptides from the venom of the giant neotropical hunting ant *Dinoponera* australis. Toxicon, 55(4), 702–710.
 https://doi.org/10.1016/j.toxicon.2009.10.021
- Johnson, S. R., Rikli, H. G., Schmidt, J. O., & Evans, M. S. (2017). A reexamination of
 poneratoxin from the venom of the bullet ant *Paraponera clavata*. *Peptides*, *98*, 51–62.
 https://doi.org/10.1016/j.peptides.2016.05.012
- Judge, R. K., Henry, P. J., Mirtschin, P., Jelinek, G., & Wilce, J. A. (2006). Toxins not
 neutralized by brown snake antivenom. *Toxinology and Applied Pharmacology*, 213, 117–
 125. https://doi.org/10.1016/j.taap.2005.09.010
- Kaas, Q., Yu, R., Jin, A. H., Dutertre, S., & Craik, D. J. (2012). ConoServer: updated content,
 knowledge, and discovery tools in the conopeptide database. *Nucleic Acids Research*, 40,

- 3674 325–330. https://doi.org/10.1093/nar/gkr886
- 3675 Kalia, J., Milescu, M., Salvatierra, J., Wagner, J., Klint, J. K., King, G. F., ... Bosmans, F.
- 3676 (2015). From foe to friend: using animal toxins to investigate ion channel function. *Journal* 3677 of Molecular Biology, 427(1), 158–175. https://doi.org/10.1016/j.jmb.2014.07.027
- Kazuma, K., Masuko, K., Konno, K., & Inagaki, H. (2017). Combined venom gland
 transcriptomic and venom peptidomic analysis of the predatory ant *Odontomachus monticola. Toxins*, 9(10), 1–15. https://doi.org/10.3390/toxins9100323
- 3681 Kimbrell, D. A., & Beutler, B. (2001). The evolution and genetics of innate immunity. *Nature*,
 3682 2, 256–267.
- King, G. F. (2011). Venoms as a platform for human drugs: translating toxins into therapeutics. *Expert Opinion on Biological Therapy*, 11(11), 1469–1484.
 https://doi.org/10.1517/14712598.2011.621940
- King, G. F. (2019). Tying pest insects in knots: the deployment of spider-venom-derived
 knottins as bioinsecticides. *Pest Management Science*, 75, 2437–2445.
 https://doi.org/10.1002/ps.5452
- King, G. F., Gentz, M. C., Escoubas, P., & Nicholson, G. M. (2008). A rational nomenclature
 for naming peptide toxins from spiders and other venomous animals. *Toxicon*, 52(2), 264–
 276. https://doi.org/10.1016/j.toxicon.2008.05.020
- King, T. P., Jim, S. Y., & Wittkowski, K. M. (2003). Inflammatory role of two venom
 components of yellow jackets (*Vespula vulgaris*): a mast cell degranulating peptide
 mastoparan and phospholipase A1. *International Archives of Allergy and Immunology*, *131*(1), 25–32. https://doi.org/10.1159/000070431
- Knudsen, C., Ledsgaard, L., Ibsen Dehli, R., Ahmadi, S., Vinther Sorensen, C., & Hougaard
 Laustsen, A. (2019). Engineering and design considerations for next-generation snakebite
 antivenoms. *Toxicon*, *167*, 67–75. https://doi.org/10.1016/j.toxicon.2019.06.005
- Kordis, D., & Gubensek, F. (2000). Adaptive evolution of animal toxin multigene families. *Gene*, 261(1), 43–52. https://doi.org/10.1016/S0378-1119(00)00490-X
- Korpelainen, E., Tuimala, J., Somervuo, P., Huss, M., & Wong, G. (2015). Transcriptome
 assembly. In N. F. Britton, X. Lin, H. M. Safer, M. V. Schneider, M. Singh, & A.
 Tramontao (Eds.), *RNA-seq Data Analysis* (Chapman &, pp. 85–107). Boca Raton: Taylor
 & Francis Group, LLC.
- Kozlov, S. A., Vassilevski, A. A., Feofanov, A. V., Surovoy, A. Y., Karpunin, D. V., & Grishin,
 E. V. (2006). Latarcins, antimicrobial and cytolytic peptides from the venom of the spider
 Lachesana tarabaevi (Zodariidae) that exemplify biomolecular diversity. *Journal of*

- 3708 *Biological Chemistry*, *281*(30), 20983–20992. https://doi.org/10.1074/jbc.M602168200
- 3709 Kuhn-Nentwig, L. (2003). Antimicrobial and cytolytic peptides of venomous arthropods.
- 3710 Cellular and Molecular Life Sciences, 60(12), 2651–2668.
 3711 https://doi.org/10.1007/s00018-003-3106-8
- Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular
 evolutionary genetics analysis across computing platforms. *Molecular Biology and Evolution*, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096
- Lamberty, M., Zachary, D., Lanot, R., Bordereau, C., Robert, A., Hoffmann, J. A., & Bulet, P.
 (2001). Constitutive expression of a cysteine-rich antifungal and a linear antibacterial
 peptide in a termite insect. *Journal of Biological Chemistry*, 276(6), 4085–4092.
 https://doi.org/10.1074/jbc.M002998200
- 3719 Larsen, A., Reynaldi, F. J., & Guzmán-Novoa, E. (2019). Fundaments of the honey bee (*Apis mellifera*) immune system. *Revista Mexicana De Ciencias Pecuarias*, 10(3), 705–728.
 3721 https://doi.org/10.22319/rmcp.v10i3.4785
- LeBrun, E. G., Jones, N. T., & Gilbert, L. E. (2014). Chemical warfare among invaders: a
 detoxification interaction facilitates an ant invasion. *Science*, *343*, 1014–1017.
 https://doi.org/10.1890/07-0659.1
- Lee, K. S., Kim, B. Y., Yoon, H. J., Choi, Y. S., & Jin, B. R. (2016). Secapin, a bee venom
 peptide, exhibits anti-fibrinolytic, anti-elastolytic, and anti-microbial activities. *Developmental and Comparative Immunology*, 63, 27–35.
 https://doi.org/10.1016/j.dci.2016.05.011
- 3729 Lemaitre, B., & Hoffmann, J. (2007). The Host Defense of *Drosophila melanogaster*. Annual
 3730 *Review of Immunology*, 25, 697–743.
 3731 https://doi.org/10.1146/annurev.immunol.25.022106.141615
- 5751 https://doi.org/10.1140/annurev.ininnunoi.25.022100.141015
- Lenoir, A., Devers, S., Marchand, P., Bressac, C., & Savolainen, R. (2010). Microgynous
 queens in the Paleartic ant, *Manica rubida*: dispersal morphs or social parasites? *Journal of Insect Science*, *10*(1), 1–13. https://doi.org/10.1673/031.010.1701
- Lenoir, A., Khalil, A., Châline, N., & Hefetz, A. (2018). New chemical data on the ant *Myrmecina graminicola* (Formicidae, Myrmicinae): Unusual abundance of alkene
 hydrocarbons and esters. *Biochemical Systematics and Ecology*, 80(June), 39–42.
 https://doi.org/10.1016/j.bse.2018.06.004
- Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., ... Durbin, R. (2009).
 The sequence alignment/map format and SAMtools. *Bioinformatics*, *25*(16), 2078–2079.
- 3741 https://doi.org/10.1093/bioinformatics/btp352

- Li, Heng, & Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler
 transform. *Bioinformatics*, 26(5), 589–595. https://doi.org/10.1093/bioinformatics/btp698
- 3744Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-3745time quantitative PCR and the $2-\Delta\Delta CT$ method. *Methods*, 25, 402–408.3746https://doi.org/10.1006/meth.2001.1262
- 3747 Lourenço, A. P., Florecki, M. M., Simões, Z. L. P., & Evans, J. D. (2018). Silencing of *Apis*3748 *mellifera* dorsal genes reveals their role in expression of the antimicrobial peptide
- defensin-1. *Insect Molecular Biology*, 27(5), 577–589. https://doi.org/10.1111/imb.12498
 Madio, B., Undheim, E. A. B., & King, G. F. (2017). Revisiting venom of the sea anemone
- 3751 *Stichodactyla haddoni*: omics techniques reveal the complete toxin arsenal of a well-3752 studied sea anemone genus. *Journal of Proteomics*, *166*, 83–92. 3753 https://doi.org/10.1016/j.jprot.2017.07.007
- Mahlapuu, M., Håkansson, J., Ringstad, L., & Björn, C. (2016). Antimicrobial peptides: an
 emerging category of therapeutic agents. *Frontiers in Cellular and Infection Microbiology*, 6(December), 194. https://doi.org/10.3389/fcimb.2016.00194
- Mariano, D. O. C., de Oliveira, Ú. C., Zaharenko, A. J., Pimenta, D. C., Rádis-Baptista, G., & 3757 3758 Prieto-Da-Silva, Á. R. de B. (2019). Bottom-up proteomic analysis of polypeptide venom 3759 components of the giant ant Dinoponera quadriceps. Toxins, 11(8). 3760 https://doi.org/10.3390/toxins11080448
- 3761 Martins, G. F., & Ramalho-Ortigão, J. M. (2012). Oenocytes in insects. *Invertebrate Survival*3762 *Journal*, 9(2), 139–152.
- Martins, G. F., Ramalho-Ortigão, J. M., Lobo, N. F., Severson, D. W., Mcdowell, M. A., &
 Pimenta, P. F. P. (2011). Insights into the transcriptome of oenocytes from *Aedes aegypti*pupae. *Memorias Do Instituto Oswaldo Cruz*, 106(3), 308–315.
 https://doi.org/10.1590/S0074-02762011000300009
- Martinson, E. O., Mrinalini, Kelkar, Y. D., Chang, C. H., & Werren, J. H. (2017). The evolution
 of venom by co-option of single-copy genes. *Current Biology*, 27(13), 2007-2013.e8.
 https://doi.org/10.1016/j.cub.2017.05.032
- Martinson, E. O., Wheeler, D., Wright, J., Mrinalini, Siebert, A. L., & Werren, J. H. (2014).
 Nasonia vitripennis venom causes targeted gene expression changes in its fly host.
 Molecular Ecology, 23(23), 5918–5930. https://doi.org/10.1111/mec.12967
- Matsumura, T., Mashiko, R., Sato, T., Itokawa, K., Maekawa, Y., Ogawa, K., ... Ato, M.
 (2018). Venom and antivenom of redback spider (*Latrodectus hasseltii*) in Japan. *Japanese Journal of Infectious Diseases*. https://doi.org/10.7883/yoken.JJID.2017.291

- Mechref, Y. (2012). Use of CID/ETD mass spectrometry to analyze glycopeptides. *Current Protocols in Protein Science*, 0(12). https://doi.org/10.1002/0471140864.ps1211s68
- Ménez, A., Stöcklin, R., & Mebs, D. (2006). "Venomics" or: the venomous systems genome
 project. *Toxicon*, 47(3), 255–259. https://doi.org/10.1016/j.toxicon.2005.12.010
- Michalek, O., Kuhn-Nentwig, L., & Pekar, S. (2019). High specific efficiency of venom of two
 prey-specialized spiders. *Toxins*, *11*(687). https://doi.org/10.3390/toxins11120687
- Mir, R., Karim, S., Kamal, M. A., Wilson, C., & Mirza, Z. (2016). Conotoxins: structure,
 therapeutic potential and pharmacological applications. *Current Pharmaceutical Design*,
 22(5). https://doi.org/10.5151/cidi2017-060
- 3785 Mitra, A. (2013). Function of the Dufour's gland in solitary and social Hymenoptera. *Journal*3786 *of Hymenoptera Research*, *35*, 33–58. https://doi.org/10.3897/JHR.35.4783
- Moreau, S. J. M. (2013). "It stings a bit but it cleans well": venoms of hymenoptera and their
 antimicrobial potential. *Journal of Insect Physiology*, 59(2), 186–204.
 https://doi.org/10.1016/j.jinsphys.2012.10.005
- Moreno, M., & Giralt, E. (2015). Three valuable peptides from bee and wasp venoms for
 therapeutic and biotechnological use: melittin, apamin and mastoparan. *Toxins*, 7(4),
 1126–1150. https://doi.org/10.3390/toxins7041126
- 3793 Morgan, E. D. (2008). Chemical sorcery for sociality: exocrine secretions of ants
 3794 (Hymenoptera: Formicidae). *Myrmecol. News*, 11(August), 79–90.
- Morgenstern, D., & King, G. F. (2013). The venom optimization hypothesis revisited. *Toxicon*,
 63(1), 120–128. https://doi.org/10.1016/j.toxicon.2012.11.022
- Nakasu, E. Y. T., Williamson, S. M., Edwards, M. G., Fitches, E. C., Gatehouse, J. A., Wright,
 G. A., & Gatehouse, A. M. R. (2014). Novel biopesticide based on a spider venom peptide
 shows no adverse effects on honeybees. *Proceedings of the Royal Society B: Biological Sciences*, 281(1787). https://doi.org/10.1098/rspb.2014.0619
- 3801 Nakhleh, J., El Moussawi, L., & Osta, M. A. (2017). The melanization response in insect
 3802 immunity. Advances in Insect Physiology (1st ed., Vol. 52). Elsevier Ltd.
 3803 https://doi.org/10.1016/bs.aiip.2016.11.002
- Nehme, N. T., Liégeois, S., Kele, B., Giammarinaro, P., Pradel, E., Hoffmann, J. A., ...
 Ferrandon, D. (2007). A model of bacterial intestinal infections in *Drosophila melanogaster*. *PLoS Pathogens*, 3(11), 1694–1709.
 https://doi.org/10.1371/journal.ppat.0030173
- 3808 Nekaris, K. A.-I., Moore, R. S., Johanna Rode, E., & Fry, B. G. (2013). Mad, bad and dangerous
 3809 to know: the biochemistry, ecology and evolution of slow loris venom. *Journal of*

- 3810 Venomous Animals and Toxins Including Tropical Diseases, 19(1), 1–10.
 3811 https://doi.org/10.1186/1678-9199-19-21
- 3812 Neyen, C., Bretscher, A. J., Binggeli, O., & Lemaitre, B. (2014). Methods to study *Drosophila*3813 immunity. *Methods*, 68(1), 116–128. https://doi.org/10.1016/j.ymeth.2014.02.023
- 3814 Nixon, S. A., Dekan, Z., Robinson, S. D., Guo, S., Vetter, I., Kotze, A. C., ... Herzig, V. (2020).
- 3815 It takes two: dimerization is essential for the broad-spectrum predatory and defensive
 3816 activities of the venom peptide Mp1a from the jack jumper ant *Myrmecia pilosula*.
 3817 *Biomedicines*, 8(185). https://doi.org/10.3390/biomedicines8070185
- Nolde, D. E., Sobol, A. G., Pluzhnikov, K. A., Grishin, E. V., & Arseniev, A. S. (1995). Threedimensional structure of ectatomin from *Ectatomma tuberculatum* ant venom. *Journal of Biomolecular NMR*, 5(1), 1–13. https://doi.org/10.1007/BF00227465
- 3821 Orivel, J. (2000). L'adaptation à la vie arboricole de la fourmi Pachycondyla goeldii
 3822 (Hymenoptera : Ponerinae).
- 3823 Orivel, J., Redeker, V., Le Caer, J. P., Krier, F., Revol-Junelles, A. M., Longeon, A., ... Rossier,
- J. (2001). Ponericins, new antibacterial and insecticidal peptides from the venom of the
 ant *Pachycondyla goeldii*. *Journal of Biological Chemistry*, 276(21), 17823–17829.
 https://doi.org/10.1074/jbc.M100216200
- Pan, J., & Hink, W. F. (2000). Isolation and characterization of myrmexins, six isoforms of
 venom proteins with anti-inflammatory activity from the tropical ant, *Pseudomyrmex triplarinus. Toxicon*, 38(10), 1403–1413. https://doi.org/10.1016/S0041-0101(99)002330
- Pennington, M. W., Czerwinski, A., & Norton, R. S. (2018). Peptide therapeutics from venom:
 current status and potential. *Bioorganic and Medicinal Chemistry*, *26*(10), 2738–2758.
 https://doi.org/10.1016/j.bmc.2017.09.029
- Petrunkevitch, A. (1926). Tarantula versus tarantula-hawk: a study in instinct. *Journal of Experimental Zoology*, 45(2), 367–397. https://doi.org/10.1002/jez.1400450202
- Piek, T., Duval, A., Hue, B., Karst, H., Lapied, B., Mantel, P., ... Schmidt, J. O. (1991).
 Poneratoxin, a novel peptide neurotoxin from the venom of the ant, *Paraponera clavata*. *Comparative Biochemistry and Physiology. Part C, Comparative*, 99(3), 487–495.
 https://doi.org/10.1016/0742-8413(91)90276-Y
- Piek, T., Hue, B., Mantel, P., Terumi, N., & Schmidt, J. O. (1991). Pharmacological
 characterization and chemical fractionation of the venom of the ponerine ant, *Paraponera*
- 3842 clavata (F.). Comparative Biochemistry and Physiology. Part C, Comparative, 99(3),
- 3843 481–486. https://doi.org/10.1016/0742-8413(91)90275-X

- Pineda, S. S., Chaumeil, P. A., Kunert, A., Kaas, Q., Thang, M. W. C., Le, L., ... King, G. F.
 (2018). ArachnoServer 3.0: an online resource for automated discovery, analysis and
 annotation of spider toxins. *Bioinformatics*, 34(6), 1074–1076.
 https://doi.org/10.1093/bioinformatics/btx661
- Pla, D., Sanz, L., Sasa, M., Acevedo, M. E., Dwyer, Q., Durban, J., ... Calvete, J. J. (2017).
 Proteomic analysis of venom variability and ontogeny across the arboreal palm-pitvipers
 (genus Bothriechis). *Journal of Proteomics*, 152, 1–12.
 https://doi.org/10.1016/j.jprot.2016.10.006
- Pluzhnikov, K. A., Nolde, D. E., Tertishnikova, S. M., Sukhanov, S. V., Sobol, A. G., Torgov,
 M. Y., ... Grishin, E. V. (1994). Structure-activity study of the basic toxic component of
 venom from the ant *Ectatomma tuberculatum*. *Bioorganicheskaia Khimiia*, 20(8–9), 857–
 871.
- Pluzhnikov, K., Nosyreva, E., Shevchenko, L., Kokoz, Y., Schmalz, D., Hucho, F., & Grishin,
 E. (1999). Analysis of ectatomin action on cell membranes. *European Journal of Biochemistry*, 262(2), 501–506. https://doi.org/10.1046/j.1432-1327.1999.00426.x
- Pluzhnikov, Kirill A., Kozlov, S. A., Vassilevski, A. A., Vorontsova, O. V., Feofanov, A. V.,
 & Grishin, E. V. (2014). Linear antimicrobial peptides from *Ectatomma quadridens* ant
 venom. *Biochimie*, *107*(PB), 211–215. https://doi.org/10.1016/j.biochi.2014.09.012
- Powell, M. E., Bradish, H. M., Cao, M., Makinson, R., Brown, A. P., Gatehouse, J. A., & 3862 3863 Fitches, E. C. (2020). Demonstrating the potential of a novel spider venom-based 3864 biopesticide for target-specific control of the small hive beetle, a serious pest of the 93, 3865 European honeybee. Journal of Pest Science. 391-402. 3866 https://doi.org/10.1007/s10340-019-01143-3
- Prashanth, J. R., Dutertre, S., Jin, A. H., Lavergne, V., Hamilton, B., Cardoso, F. C., ... Lewis,
 R. J. (2016). The role of defensive ecological interactions in the evolution of conotoxins. *Molecular Ecology*, 25(2), 598–615. https://doi.org/10.1111/mec.13504
- Pull, C., Ugelvig, L., Wiesenhofer, F., Tragust, S., Schmitt, T., Brown, M., & Cremer, S.
 (2018). Destructive disinfection of infected brood prevents systemic disease spread in ant
 colonies. *ELife*, 7, 32073. https://doi.org/10.7554/eLife.32073.001
- 3873 R Core Team. (2017). R: a language and environment for statistical computing. *R. Foundation* 3874 *for Statistical Computing*. Retrieved from https://www.r-project.org/
- Radis-Baptista, G., Dodou, H. V., Prieto-da-Silva, A. R. B., Zaharenko, A. J., Nihei, K.,
 Inagaki, H., ... Konno, K. (2020). Comprehensive analysis of peptides and low molecular
 weight components of the giant ant *Dinoponera quadriceps* venom. *Biological Chemistry*.

- 3878 https://doi.org/10.1515/hsz-2019-397ja-01
- 3879 Rádis-Baptista, G., & Konno, K. (2020). Arthropod venom components and their potential
 3880 usage. *Toxins*, 12(82). https://doi.org/10.3390/toxins12020082
- 3881 Rice, P., Longden, L., & Bleasby, A. (2000). EMBOSS: the European Molecular Biology Open
 3882 Software Suite. *Trends in Genetics*, *16*(6), 276–277. https://doi.org/10.1016/S01683883 9525(00)02024-2
- 3884 Rifflet, A., Gavalda, S., Téné, N., Orivel, J., Leprince, J., Guilhaudis, L., ... Treilhou, M. 3885 (2012). Identification and characterization of a novel antimicrobial peptide from the 3886 ant bicarinatum. venom of the Tetramorium Peptides, 38(2), 363-370. 3887 https://doi.org/10.1016/j.peptides.2012.08.018
- Rima, M., Naini, S. M. A., Karam, M., Sadek, R., Sabatier, J. M., & Fajloun, Z. (2018). Vipers
 of the Middle East: a rich source of bioactive molecules. *Molecules*, 23(2721).
 https://doi.org/10.3390/molecules23102721
- Rivel, M., Solano, D., Herrera, M., Vargas, M., Villalta, M., Segura, Á., ... Gutiérrez, J. M. 3891 3892 (2016). Pathogenesis of dermonecrosis induced by venom of the spitting cobra, Naja 3893 nigricollis: an experimental study in mice. Toxicon. 119. 171–179. 3894 https://doi.org/10.1016/j.toxicon.2016.06.006
- Robertson, P. L. (1968). A morphological and functional study of the venom apparatus in
 representatives of some major groups of hymenoptera. *Australian Journal of Zoology*, *16*(1), 133–166. https://doi.org/10.1071/ZO9680133
- Robinson, S. D., Mueller, A., Clayton, D., Starobova, H., Hamilton, B. R., Payne, R. J., ...
 Undheim, E. A. B. (2018). A comprehensive portrait of the venom of the giant red bull
 ant, *Myrmecia gulosa*, reveals a hyperdiverse hymenopteran toxin gene family. *Science Advances*, 4(9), eaau4640. https://doi.org/10.1126/sciadv.aau4640
- Rojko, N., Dalla Serra, M., Maček, P., & Anderluh, G. (2016). Pore formation by actinoporins,
 cytolysins from sea anemones. *Biochimica et Biophysica Acta Biomembranes*, *1858*(3),
 446–456. https://doi.org/10.1016/j.bbamem.2015.09.007
- 3905 Rollard, C., Chippaux, J.-P., & Goyffon, M. (2015). La fonction venimeuse (Lavoisier). Paris.
- 3906 Roma, G. C., Bueno, O. C., & Camargo-Mathias, M. I. (2010). Morpho-physiological analysis
- 3907 of the insect fat body: a review. *Micron*, 41(5), 395–401.
 3908 https://doi.org/10.1016/j.micron.2009.12.007
- Roma, G. C., Mathias, M. I. C., & Bueno, O. C. (2006). Fat body in some genera of leaf-cutting
 ants (Hymenoptera: Formicidae). Proteins, lipids and polysaccharides detection. *Micron*,
- 3911 37(3), 234–242. https://doi.org/10.1016/j.micron.2005.10.012

- 3912 Sackton, T. B., Lazzaro, B. P., Schlenke, T. A., Evans, J. D., Hultmark, D., & Clark, A. G.
- 3913 (2007). Dynamic evolution of the innate immune system in *Drosophila*. *Nature Genetics*,
 3914 39(12), 1461–1468.
- 3915 Satyavathi, V. V., Minz, A., & Nagaraju, J. (2014). Nodulation: an unexplored cellular defense
 3916 mechanism in insects. *Cellular Signalling*, 26(8), 1753–1763.
 3917 https://doi.org/10.1016/j.cellsig.2014.02.024
- 3918 Schendel, V., Rash, L. D., Jenner, R. A., & Undheim, E. A. B. (2019). The diversity of venom:
- 3919the importance of behavior and venom system morphology in understanding its ecology3920and evolution. *Toxins*, 11(666). https://doi.org/10.3390/toxins11110666
- Schlüns, H., & Crozier, R. H. (2007). Relish regulates expression of antimicrobial peptide genes
 in the honeybee, *Apis mellifera*, shown by RNA interference. *Insect Molecular Biology*,

3923 *16*(6), 753–759. https://doi.org/10.1111/j.1365-2583.2007.00768.x

- 3924 Schlüns, Helge, & Crozier, R. H. (2009). Molecular and chemical immune defenses in ants
 3925 (Hymenoptera: Formicidae). *Myrmecological News*, *12*(September), 237–249.
- Schmidt, J. O. (1987). Chemistry, pharmacology and chemical ecology of ant venoms. In T.
 Piek (Ed.), *Venoms of the Hymenoptera* (Academic P, pp. 425–498). London.
- Schmidt, J. O. (2019a). Pain and lethality induced by insect stings: an exploratory and
 correlational study. *Toxin*, 11(427). https://doi.org/10.3390/toxins11070427
- Schmidt, J. O. (2019b). The insect sting pain scale: how the pain and lethality of ant, wasp and
 bee venoms can guide the way for human benefit. *Preprints*, 2019050318.
- Schmidt, J. O., & Blum, M. S. (1978a). A harvester ant venom: chemistry and pharmacology. *Science*, *200*, 1064–1066.
- Schmidt, J. O., & Blum, M. S. (1978b). The biochemical constituents of the venom of the
 harvester ant, *Pogonomyrmex badius*. *Comparative Biochemistry and Physiology*. *Part C*, *Comparative*, *61*(1), 239–247. https://doi.org/10.1016/0306-4492(78)90137-5
- Schmidt, P. J., Sherbrooke, W. C., & Schmidt, J. O. (1989). The detoxification of ant
 (*Pogonomyrmex*) venom by a blood factor in horned lizards (Phrynosoma). *Copeia*, *3*,
 603–607.
- 3940 Schweitz, H., Bruhn, T., Guillemare, E., Moinier, D., Lancelin, J. M., Béress, L., & Lazdunski,
- 3941 M. (1995). Kalicludines and kaliseptine: two different classes of sea anemone toxins for
- voltage-sensitive K+ channels. *Journal of Biological Chemistry*, 270(42), 25121–25126.
 https://doi.org/10.1074/jbc.270.42.25121
- 3944 Sedlazeck, F. J., Rescheneder, P., Smolka, M., Fang, H., Nattestad, M., Von Haeseler, A., &
- 3945 Schatz, M. C. (2018). Accurate detection of complex structural variations using single-

- 3946 molecule sequencing. *Nature Methods*, *15*(6), 461–468. https://doi.org/10.1038/s415923947 018-0001-7
- Senji Laxme, R. R., Suranse, V., & Sunagar, K. (2019). Arthropod venoms: biochemistry,
 ecology and evolution. *Toxicon*, *158*(November 2018), 84–103.
 https://doi.org/10.1016/j.toxicon.2018.11.433
- 3951 Servent, D. (2016). Venins : menace ou opportunité thérapeutique. In *Les conférences Cyclope* 3952 *du CEA Saclay*.
- Sheehan, G., Farrell, G., & Kavanagh, K. (2020). Immune priming: the secret weapon of the
 insect world. *Virulence*, 11(1), 238–246. https://doi.org/10.1080/21505594.2020.1731137
- Shin, J., Lee, W., & Lee, W. (2008). Structural proteomics by NMR spectroscopy. *Expert Review of Proteomics*, 5(4), 589–601. https://doi.org/10.1586/14789450.5.4.589
- Silva, P. M., Gonçalves, S., & Santos, N. C. (2014). Defensins: antifungal lessons from
 eukaryotes. *Frontiers in Microbiology*, 5(97). https://doi.org/10.3389/fmicb.2014.00097
- 3959 Strand, M. R. (2008). The insect cellular immune response. *Insect Science*, 15(1), 1–14.
 3960 https://doi.org/10.1111/j.1744-7917.2008.00183.x
- Sunagar, K., Morgenstern, D., Reitzel, A. M., & Moran, Y. (2016). Ecological venomics: how
 genomics, transcriptomics and proteomics can shed new light on the ecology and evolution
 of venom. *Journal of Proteomics*, *135*, 62–72. https://doi.org/10.1016/j.jprot.2015.09.015
- 3964 Szolajska, E., Poznanski, J., Ferber, M. L., Michalik, J., Gout, E., Fender, P., ... Chroboczek,
- J. (2004). Poneratoxin, a neurotoxin from ant venom: Structure and expression in insect
 cells and construction of a bio-insecticide. *European Journal of Biochemistry*, 271(11),
- 3967 2127–2136. https://doi.org/10.1111/j.1432-1033.2004.04128.x
- Tafesh-Edwards, G., & Eleftherianos, I. (2020). JNK signaling in *Drosophila* immunity and
 homeostasis. *Immunology Letters*. https://doi.org/10.1016/j.imlet.2020.06.017
- Tanenhaus, A. K., Zhang, J., & Yin, J. C. P. (2012). In vivo circadian oscillation of dCREB2
 and NF-kB activity in the *Drosophila* nervous system. *PLoS ONE*, 7(10), e45130.
 https://doi.org/10.1371/journal.pone.0045130
- Tapadia, M. G., & Verma, P. (2012). Immune response and anti-microbial peptides expression
 in malpighian tubules of *Drosophila melanogaster* is under developmental regulation.
 PLoS ONE, 7(7), 1–12. https://doi.org/10.1371/journal.pone.0040714
- Téné, N., Bonnafé, E., Berger, F., Rifflet, A., Guilhaudis, L., Ségalas-Milazzo, I., ... Treilhou,
 M. (2016). Biochemical and biophysical combined study of bicarinalin, an ant venom
 antimicrobial peptide. *Peptides*, 79, 103–113.
 https://doi.org/10.1016/j.peptides.2016.04.001

- 3980 Téné, N., Roche-Chatain, V., Rifflet, A., Bonnafé, E., Lefranc, B., Leprince, J. Ô., & Treilhou,
- 3981 M. (2014). Potent bactericidal effects of bicarinalin against strains of the *Enterobacter* and
- 3982
 Cronobacter
 genera.
 Food
 Control,
 42,
 202–206.

 3983
 https://doi.org/10.1016/j.foodcont.2014.02.026

 <
- Tonk, M., Pierrot, C., Cabezas-cruz, A., Rahnamaeian, M., Khalife, J., & Vilcinskas, A. (2019).
 The *Drosophila melanogaster* antimicrobial peptides Mtk-1 and Mtk-2 are active against
 the malarial parasite Plasmodium falciparum. *Parasitology Research*.
- Torres, A. F. C., Huang, C., Chong, C. M., Leung, S. W., Prieto-da-Silva, Á. R. B., Havt, A.,
 ... Rádis-Baptista, G. (2014). Transcriptome analysis in venom gland of the predatory
 giant ant *Dinoponera quadriceps*: insights into the polypeptide toxin arsenal of
 hymenopterans. *PLoS ONE*, 9(1). https://doi.org/10.1371/journal.pone.0087556
- Touchard, A., Aili, S. R., Fox, E. G. P., Escoubas, P., Orivel, J., Nicholson, G. M., & Dejean,
 A. (2016). The biochemical toxin arsenal from ant venoms. *Toxins*, 8(1), 1–28.
 https://doi.org/10.3390/toxins8010030
- Touchard, A., Aili, S. R., Téné, N., Barassé, V., Klopp, C., Dejean, A., ... Bonnafé, E. (2020).
 Venom peptide repertoire of the european myrmicine ant *Manica rubida*: identification of
 insecticidal toxins. *Journal of Proteome Research*, 19(4), 1800–1811.
 https://doi.org/10.1021/acs.jproteome.0c00048
- Touchard, A., Brust, A., Cardoso, F. C., Chin, Y. K. Y., Herzig, V., Jin, A. H., ... Escoubas, P.
 (2016). Isolation and characterization of a structurally unique β-hairpin venom peptide
 from the predatory ant *Anochetus emarginatus*. *Biochimica et Biophysica Acta General Subjects*, *1860*(11), 2553–2562. https://doi.org/10.1016/j.bbagen.2016.07.027
- Touchard, A., Labrière, N., Roux, O., Petitclerc, F., Orivel, J., Escoubas, P., ... Dejean, A.
 (2014). Venom toxicity and composition in three *Pseudomyrmex* ant species having
 different nesting modes. *Toxicon*, 88, 67–76.
 https://doi.org/10.1016/j.toxicon.2014.05.022
- Touchard, A., Mendel, H. C., Boulogne, I., Herzig, V., & Emidio, N. B. (2020). Heterodimeric
 insecticidal peptide provides new insights into the molecular and functional diversity of
 ant venoms. *BioRxiv*. https://doi.org/10.1101/2020.07.29.226878
- 4009 Touchard, A., Téné, N., Chan Tchi Song, P., Lefranc, B., Leprince, J., Treilhou, M., & Bonnafé,
- 4010 E. (2018). Deciphering the molecular diversity of an ant venom peptidome through a
 4011 venomics approach. *Journal of Proteome Research*, 17(10), 3503–3516.
 4012 https://doi.org/10.1021/acs.jproteome.8b00452
- 4013 Tragust, S. (2016). External immune defence in ant societies (Hymenoptera: Formicidae): the

- 4014 role of antimicrobial venom and metapleural gland secretion. *Myrmecological News*, 23,
 4015 119–128.
- 4016 Tragust, S., Mitteregger, B., Barone, V., Konrad, M., Ugelvig, L. V., & Cremer, S. (2013). Ants
 4017 disinfect fungus-exposed brood by oral uptake and spread of their poison. *Current Biology*,
 4018 23(1), 76–82. https://doi.org/10.1016/j.cub.2012.11.034
- 4019 Turillazzi, S., Mastrobuoni, G., Dani, F. R., Moneti, G., Pieraccini, G., La Marca, G., ...
- 4020Dapporto, L. (2006). Dominulin A and B: Two new antibacterial peptides identified on4021the cuticle and in the venom of the social paper wasp Polistes dominulus using MALDI-
- 4022 TOF, MALDI-TOF/TOF, and ESI-ion trap. *Journal of the American Society for Mass*4023 *Spectrometry*, *17*(3), 376–383. https://doi.org/10.1016/j.jasms.2005.11.017
- 4024 Tzou, P., Ohresser, S., Ferrandon, D., Capovilla, M., Reichhart, J. M., Lemaitre, B., ... Imler,
 4025 J. L. (2000). Tissue-specific inducible expression of antimicrobial peptide genes in
- 4026
 Drosophila surface epithelia. Immunity, 13(5), 737–748. https://doi.org/10.1016/S1074

 4027
 7613(00)00072-8
- 4028 Utkin, Y. N. (2015). Animal venom studies: current benefits and future developments. *World*4029 *Journal of Biological Chemistry*, 6(2), 28–33. https://doi.org/10.4331/wjbc.v6.i2.28
- 4030 Uvell, H., & Engström, Y. (2007). A multilayered defense against infection: combinatorial
 4031 control of insect immune genes. *Trends in Genetics*, 23(7), 342–349.
 4032 https://doi.org/10.1016/j.tig.2007.05.003
- van Aalten, D. M., Synstad, B., Brurberg, M. B., Hough, E., Riise, B. W., Eijsink, V. G., &
 Wierenga, R. K. (2000). Structure of a two-domain chitotriosidase from *Serratia marcescens* at 1.9-A resolution. *Proceedings of the National Academy of Sciences of the*United States of America, 97(11), 5842–5847. https://doi.org/10.1073/pnas.97.11.5842
- 4037 Vassilevski, A. A., Kozlov, S. A., & Grishin, E. V. (2009). Molecular diversity of spider venom.
 4038 *Biochemistry*, 74(13), 1505–1534. https://doi.org/10.1134/S0006297909130069
- Viljakainen, L. (2015). Evolutionary genetics of insect innate immunity. *Briefings in Functional Genomics*, 14(6), 407–412. https://doi.org/10.1093/bfgp/elv002
- 4041 von Reumont, Bjoern Marcus, Campbell, L. I., & Jenner, R. A. (2014). *Quo vadis* venomics?
 4042 A roadmap to neglected venomous invertebrates. *Toxins*, 6(12), 3488–3551.
 4043 https://doi.org/10.3390/toxins6123488
- 4044 von Reumont, Björn M., Campbell, L. I., Richter, S., Hering, L., Sykes, D., Hetmank, J., ...
- 4045 Bleidorn, C. (2014). A polychaete's powerful punch: venom gland transcriptomics of
- 4046 *Glycera* reveals a complex cocktail of toxin homologs. *Genome Biology and Evolution*,
- 4047 *6*(9), 2406–2423. https://doi.org/10.1093/gbe/evu190

- von Reumont, Björn M., Undheim, E. A. B., Jauss, R. T., & Jenner, R. A. (2017). Venomics of
 remipede crustaceans reveals novel peptide diversity and illuminates the venom's
 biological role. *Toxins*, 9(8). https://doi.org/10.3390/toxins9080234
- 4051 Von Reumont, Björn Marcus. (2018). Studying smaller and neglected organisms in modern
 4052 evolutionary venomics implementing RNASeq (Transcriptomics)—A critical guide.
 4053 Toxins, 10(7), 1–23. https://doi.org/10.3390/toxins10070292
- 4054 von Sicard, N. A. E., Candy, D. J., & Anderson, M. (1989). The biochemical composition of
 4055 venom from the pavement ant (*Tetramorium caespitum* L.). *Toxicon*, 27(10), 1127–1133.
 4056 https://doi.org/10.1016/0041-0101(89)90006-8
- Walker, A. A. (2020). The evolutionary dynamics of venom toxins made by insects and other
 animals. *Biochemical Society Transactions*. https://doi.org/10.42/BST20190820
- 4059 Walker, A. A., Dobson, J., Jin, J., Robinson, S. D., Herzig, V., Vetter, I., ... Fry, B. G. (2018).
- 4060 Buzz Kill: function and proteomic composition of venom from the giant assassin fly
 4061 Dolopus genitalis (Diptera: Asilidae). Toxins, 10(456).
 4062 https://doi.org/10.3390/toxins10110456
- Walker, A. A., Hernández-vargas, M. J., Corzo, G., Fry, B. G., Glenn, , & King, F. (2018).
 Giant fish-killing water bug reveals ancient and dynamic venom evolution in Heteroptera. *Cellular and Molecular Life Sciences*. https://doi.org/10.1007/s00018-018-2768-1
- Walker, A. A., Madio, B., Jin, J., Undheim, E. A. B., Fry, B. G., & King, G. F. (2017). Melt
 with this kiss: paralyzing and liquefying venom of the assassin bug *Pristhesancus plagipennis* (Hemiptera: Reduviidae). *Molecular & Cellular Proteomics*, 16(4), 552–566.
 https://doi.org/10.1074/mcp.M116.063321
- Walker, A. A., Mayhew, M. L., Jin, J., Herzig, V., Undheim, E. A. B., Sombke, A., ... King,
 G. F. (2018). The assassin bug *Pristhesancus plagipennis* produces two distinct venoms
 in separate gland lumens. *Nature Communications*, 9(1), 1–10.
 https://doi.org/10.1038/s41467-018-03091-5
- 4074 Walker, A. A., Robinson, S. D., Hamilton, B. F., Undheim, E. A. B., & King, G. F. (2020).
 4075 Deadly proteomes: a practical guide to proteotranscriptomics of animal venoms.
 4076 *Proteomics*. https://doi.org/10.1002/jssc.201200569
- Walker, A. A., Robinson, S. D., Yeates, D. K., Jin, J., Baumann, K., Dobson, J., ... King, G. F.
 (2018). Entomo-venomics: the evolution, biology and biochemistry of insect venoms. *Toxicon*, 154(July), 15–27. https://doi.org/10.1016/j.toxicon.2018.09.004
- 4080 Wanandy, T., Gueven, N., Davies, N. W., Brown, S. G. A., & Wiese, M. D. (2015). Pilosulins:
- 4081 A review of the structure and mode of action of venom peptides from an australian ant

- 4082 *Myrmecia pilosula. Toxicon*, *98*, 54–61. https://doi.org/10.1016/j.toxicon.2015.02.013
- Ward, P. S., Brady, S. G., Fisher, B. L., & Schultz, T. R. (2015). The evolution of myrmicine
 ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera:
 Formicidae). *Systematic Entomology*, 40(1), 61–81. https://doi.org/10.1111/syen.12090
- 4086 Whittington, C. M., & Belov, K. (2007). Platypus venom: a review. *Australian Mammalogy*,
 4087 29, 57–62. https://doi.org/10.1071/AM07006
- 4088 Whittington, C. M., Papenfuss, A. T., Bansal, P., Torres, A. M., Wong, E. S. W., Deakin, J. E.,
- 4089 ... Belov, K. (2008). Defensins and the convergent evolution of platypus and reptile
 4090 venom genes. *Genome Research*, 18(6), 986–994. https://doi.org/10.1101/gr.7149808
- Williams, D. J., Habib, A. G., & Warrell, D. A. (2018). Clinical studies of the effectiveness and
 safety of antivenoms. *Toxicon*, *150*, 1–10. https://doi.org/10.1016/j.toxicon.2018.05.001
- Williams, F. X. (1956). Life history studies of *Pepsis* and *Hemipepsis* wasps in California
 (Hymenoptera: Pompilidae). *Annals of the Entomological Society of America*, 49(5), 447–
 4095 466. https://doi.org/10.1093/aesa/49.5.447
- 4096 Wilson, D., & Daly, N. L. (2018). Venomics: a mini-review. *High-Throughput*, 7(19).
 4097 https://doi.org/10.3390/ht7030019
- Wu, K., Yang, B., Huang, W., Dobens, L., Song, H., & Ling, E. (2016). Gut immunity in
 lepidopteran insects. *Developmental and Comparative Immunology*, 64, 65–74.
 https://doi.org/10.1016/j.dci.2016.02.010
- Wu, Q., Patočka, J., & Kuča, K. (2018). Insect antimicrobial peptides, a mini review. *Toxins*, *10*(11), 461. https://doi.org/10.3390/toxins10110461
- Wulff, H., Christophersen, P., Colussi, P., Chandy, K. G., & Yarov-Yarovoy, V. (2019).
 Antibodies and venom peptides: new therapeutic modalities for ion channels. *Natural Reviews Drug Discovery*, 18(5), 339–357. https://doi.org/10.1111/j.14765381.2011.01649 5.x
- Xie, F., Xiao, P., Chen, D., Xu, L., & Zhang, B. (2012). miRDeepFinder: A miRNA analysis
 tool for deep sequencing of plant small RNAs. *Plant Molecular Biology*, 80(1), 75–84.
 https://doi.org/10.1007/s11103-012-9885-2
- 4110 Yacoub, T., Rima, M., Karam, M., Sabatier, J.-M., & Fajloun, Z. (2020). Antimicrobials from
 4111 venomous animals: an overview. *Molecules*, 25(2402).
 4112 https://doi.org/10.3390/molecules25102402
- 4113 Yaffe, H., Buxdorf, K., Shapira, I., Ein-Gedi, S., Moyal-Ben Zvi, M., Fridman, E., ... Levy, M.
 4114 (2012). LogSpin: a simple, economical and fast method for RNA isolation from infected
- 4115 or healthy plants and other eukaryotic tissues. BMC Research Notes, 5(1), 45.

- 4116 https://doi.org/10.1186/1756-0500-5-45
- Yakovlev, A. Y., Nesin, A. P., Simonenko, N. P., Gordya, N. A., Tulin, D. V., Kruglikova, A.
 A., & Chernysh, S. I. (2017). Fat body and hemocyte contribution to the antimicrobial
 peptide synthesis in *Calliphora vicina* R.-D. (Diptera: Calliphoridae) larvae. *In Vitro Cellular and Developmental Biology Animal*, 53(1), 33–42.
- 4121 https://doi.org/10.1007/s11626-016-0078-1
- 4122 Yee, A. A., Savchenko, A., Ignachenko, A., Lukin, J., Xu, X., Skarina, T., ... Arrowsmith, C.
- 4123 H. (2005). NMR and X-ray crystallography, complementary tools in structural proteomics
- 4124 of small proteins. Journal of the American Chemical Society, 127(47), 16512–16517.
 4125 https://doi.org/10.1021/ja053565+
- Zaidman-Rémy, A., Hervé, M., Poidevin, M., Pili-Floury, S., Kim, M. S., Blanot, D., ...
 Lemaitre, B. (2006). The *Drosophila* amidase PGRP-LB modulates the immune response
 to bacterial infection. *Immunity*, 24(4), 463–473.
 https://doi.org/10.1016/j.immuni.2006.02.012
- Zancolli, G., & Casewell, N. R. (2019). Venom systems as models for studying the origin and
 regulation of evolutionary novelties. *Molecular Biology and Evolutiongy*, msaa133.
 https://doi.org/10.1093/molbev/msaa133
- 4133 Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. *Nature*, *415*, 389–395.
- Zelezetsky, I., Pag, U., Antcheva, N., Sahl, H. G., & Tossi, A. (2005). Identification and
 optimization of an antimicrobial peptide from the ant venom toxin pilosulin. *Archives of Biochemistry and Biophysics*, 434(2), 358–364. https://doi.org/10.1016/j.abb.2004.11.006
- Zhang, Z. T., & Zhu, S. Y. (2009). Drosomycin, an essential component of antifungal defence
 in *Drosophila*. *Insect Molecular Biology*, *18*(5), 549–556. https://doi.org/10.1111/j.13652583.2009.00907.x
- 4140 Ziegman, R., & Alewood, P. (2015). Bioactive components in fish venoms. Toxins, 7(5), 1497-
- 4141 1531. https://doi.org/10.3390/toxins7051497
- 4142

The Peptide Venom Composition of the Fierce Stinging Ant *Tetraponera Aethiops* (Formicidae: Pseudomyrmecinae)

Valentine Barassé, Axel Touchard, Nathan Téné, Maurice Tindo, Martin Kenne, Christophe Klopp, Alain Dejean, Elsa Bonnafé and Michel Treilhou

	Length (kb)	Hits	Reads Per Million	%	Contig_ORF	Seq ID Name	E-value	Function
CL1015Contig1 _1	448	11897 0	408.07	0.04				
CL1134Contig1 _1	1124	12263 8	420.65	0.04	CL1134Contig1_ 1_6	sp Q8WRF3 RL32_APIME 60S ribosomal protein L32 OS = Apis mellifera OX = 7460 GN = RpL32 PE = 2 SV = 1	2.45e- 82	Translation
CL114Contig1_ 1	1044	18915 1	648.79	0.06				
CL114Contig2_ 1	3807	86167 98	29555.53	2.96		U2-PSDTX-Ta1a Genbank Accession Number : MN607169		Venom peptide
CL1185Contig1 _1	3361	77550 5	2659.97	0.27				
					CL1193Contig1_ 1_5	sp Q3ZU95 PA1_VESGE Phospholipase A1 OS = Vespula germanica OX = 30212 PE = 2 SV = 1	7.81e- 21	
CL1193Contig1 _1	7145	16824 13	5770.66	0.58	CL1193Contig1_ 1_6	sp Q8K1C7 MOT14_MOUSE Monocarboxylate transporter 14 OS = Mus musculus OX = 10090 GN = Slc16a14 PE = 2 SV = 1	2.00e- 37	Phospholipase
					CL1193Contig1_ 1_6	sp Q3ZU95 PA1_VESGE Phospholipase A1 OS = Vespula germanica OX = 30212 PE = 2 SV = 1	2.42e- 43	-
CL120Contig1_ 4	2266	12335 3	423.1	0.04	CL120Contig1_4 _3	sp Q1HPS0 MLR_BOMMO Myosin regulatory light chain 2 OS = Bombyx mori OX = 7091 PE = 1 SV = 1	2.16e- 80	Cytosqueleton
CL1275Contig1 _1	3598	18623 211	63877.43	6.39		U2-PSDTX-Ta1b Genbank Accession Number : MN607170		Venom peptide

Table S1. Addressing table of major contigs expressed by *Tetraponera aethiops* venom glands.

CL12Contig1_1	665	23999 4	823.18	0.08	CL12Contig1_1_ 6	sp Q962Q7 RS23_SPOFR 40S ribosomal protein S23 OS = Spodoptera frugiperda OX = 7108 GN = RpS23 PE = 2 SV = 1	6.30e- 90	Translation
CL1321Contig1 _1	5444	42983 54	14743.31	1.47				
CL134Contig1_ 5	2180	10389 5	356.36	0.04	CL134Contig1_5 _5	sp P29341 PABP1_MOUSE Polyadenylate-binding protein 1 OS = Mus musculus OX = 10090 GN = Pabpc1 PE = 1 SV = 2	4.23e- 145	RNA Maturation
CL134Contig1_ 6	777	16279 1	558.37	0.06	CL134Contig1_6 _4	sp P20965 PABPA_XENLA Polyadenylate-binding protein 1-A OS = Xenopus laevis OX = 8355 GN = pabpc1- a PE = 1 SV = 3	8.47e- 97	Transcription
CL1626Contig1	2792	36811	1262.64	0.12	CL1626Contig1_ 2_1	sp P31689 DNJA1_HUMAN DnaJ homolog subfamily A member 1 OS = Homo sapiens OX = 9606 GN = DNAJA1 PE = 1 SV = 2	7.89e- 160	Protein
2	5765	9	1202.04	0.13	CL1626Contig1 2_4	sp Q962Q6 RS24_SPOFR 40S ribosomal protein S24 OS = Spodoptera frugiperda OX = 7108 GN = RpS24 PE = 2 SV = 1	1.20e- 71	Maturation
CL1740Contig1 _1	2749	15334 801	52598.21	5.26				
CL1762Contig1 _1	394	21365 8	732.84	0.07				
CL1804Contig1 _1	3123	43286 324	148471.66	14.8 5		U2-PSDTX-Ta1c Genbank Accession Numbers : MN607168		Venom peptide
CL1844Contig1 _1	2272	33442 6	1147.08	0.11	CL1844Contig1_ 1_1	sp O18640 GBLP_DROME Guanine nucleotide-binding protein subunit beta-like protein OS = Drosophila melanogaster OX = 7227 GN = Rack1 PE = 1 SV = 2	0.0	Cellular Signaling
CL1Contig165_ 1	4280	38373 0	1316.19	0.13				
CL1Contig387_ 1	1547	73881 70	25341.35	2.53		U3-PSDTX-Ta1a Genbank Accession Numbers : MN607165		Venom peptide
CL1Contig399_ 4	1164	10573 5	362.67	0.04	CL1Contig399_4 _4	sp P08879 NDKA_DROME Nucleoside diphosphate kinase OS = Drosophila melanogaster OX = 7227 GN = awd PE = 1 SV = 3	8.15e- 82	Metabolism

CL2021Contig1 _1	2516	11554 9	396.33	0.04	CL2021Contig1_ 1_6	sp Q9VBV3 TAKT_DROME Protein takeout OS = Drosophila melanogaster OX = 7227 GN = to PE = 2 SV = 1	1.26e- 08	Circadian Rythm									
CL2229Contig1 _1	923	37149 3	1274.22	0.13	CL2229Contig1_ 1_6	sp Q7KF90 RL31_SPOFR 60S ribosomal protein L31 OS = Spodoptera frugiperda OX = 7108 GN = RpL31 PE = 2 SV = 1	7.20e- 62	Translation									
CL2248Contig1 _1	2074	12327 2	422.82	0.04													
CL235Contig1_ 1	5969	46548 0	1596.59	0.16	CL235Contig1_1 _6	sp B2D0J4 VDPP4_APIME Venom dipeptidyl peptidase 4 OS = Apis mellifera OX = 7460 PE = 1 SV = 1	0.0	Peptide Maturation									
CL2441Contig1 _1	764	18951 1	650.02	0.07	CL2441Contig1_ 1_3	sp P68203 RS27A_SPOFR Ubiquitin-40S ribosomal protein S27a OS = Spodoptera frugiperda OX = 7108 PE = 2 SV = 2	1.08e- 77	Protein Degradation									
CL2597Contig1 _2	2581	12108 4	415.32	0.04	CL2597Contig1_ 2_6	sp Q1HDZ5 EIF3B_BOMMO Eukaryotic translation initiation factor 3 subunit B OS = Bombyx mori OX = 7091 GN = eIF3-S9 PE = 2 SV = 1	0.0	Translation									
CL260Contig1_	15246	34144	1101 1/	0.12	CL260Contig1_1 _2	sp A2T929 RXRAA_DANRE Retinoic acid receptor RXR-alpha-A OS = Danio rerio OX = 7955 GN = rxraa PE = 2 SV = 2	1.05e- 142	Transcription /									
1	1 15246 8	11/1.16	5 0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	CL260Contig1_1 _6	sp Q75VN3 TCTP_BOMMO Translationally-controlled tumor protein homolog OS = Bombyx mori OX = 7091 GN = Tctp PE = 2 SV = 1	3.88e- 91	Cytosqueleton
CL2682Contig1 _1	1709	17304 2	593.53	0.06	CL2682Contig1_ 1_1	sp Q95ZE8 RL14_DROVI 60S ribosomal protein L14 OS = Drosophila virilis OX = 7244 GN = RpL14 PE = 3 SV = 1	3.28e- 44	Translation									
		00111			CL268Contig1_1 _2	sp P62282 RS11_RAT 40S ribosomal protein S11 OS = Rattus norvegicus OX = 10116 GN = Rps11 PE = 1 SV = 3	4.09e- 70										
CL268Contig1_ 1	4197	30111 7	1032.83	0.1	 CL268Contig1_1 _4	sp Q7Z3D4 LYSM3_HUMAN LysM and putative peptidoglycan-binding domain-containing protein 3 OS = Homo sapiens OX = 9606 GN = LYSMD3 PE = 1 SV = 2	2.46e- 12	Unknown									
CL2720Contig1 _1	2730	11783 1	404.16	0.04	CL2720Contig1_ 1_6	sp O17389 TYB_CAEEL Thymosin beta OS = Caenorhabditis elegans OX = 6239 GN = tth-1 PE = 1 SV = 2	3.19e- 15	Cytosqueleton									

CL2890Contig1	2494		363.09	0.04	CL2890Contig1_ 1_1	sp P55828 RS20_DROME 40S ribosomal protein S20 OS = Drosophila melanogaster OX = 7227 GN = RpS20 PE = 1 SV = 1 sp P41374 IF2A_DROME Eukarvotic translation	8.78e- 58	Translation
					CL2890Contig1_ 1_4	initiation factor 2 subunit 1 OS = Drosophila melanogaster OX = 7227 GN = eIF2alpha PE = 2 SV = 1	3.68e- 146	
CL3020Contig1 _1	1913	27990 8	960.08	0.1	CL3020Contig1_ 1_2	sp Q56FG6 RL5_LYSTE 60S ribosomal protein L5 OS = Lysiphlebus testaceipes OX = 77504 GN = RpL5 PE = 2 SV = 1	2.53e- 161	Translation
CL3328Contig1 _1	4478	14107 8	483.9	0.05	CL3328Contig1_ 1_5	sp Q9VFC2 SP88E_DROME Serine protease inhibitor 88Ea OS = Drosophila melanogaster OX = 7227 GN = Spn88Ea PE = 2 SV = 1	6.23e- 62	Immunity
CL349Contig1_ 1	1286	22231 0	762.52	0.08				
CL3564Contig1 _1	8161	15830 33	5429.79	0.54	CL3564Contig1_ 1_3	sp Q3ULZ2 FHDC1_MOUSE FH2 domain-containing protein 1 OS = Mus musculus OX = 10090 GN = Fhdc1 PE = 1 SV = 3	1.18e- 88	Cytosqueleton
CL3611Contig1 _1	2022	13592 2	466.21	0.05	CL3611Contig1_ 1_1	sp P54985 PPIA_BLAGE Peptidyl-prolyl cis-trans isomerase OS = Blattella germanica OX = 6973 GN = CYPA PE = 2 SV = 1	3.85e- 92	Protein Maturation
CL3706Contig1	2066	32329	1102 20	0 11	CL3706Contig1_ 1_2	sp Q63159 COQ3_RAT Ubiquinone biosynthesis O- methyltransferase. mitochondrial OS = Rattus norvegicus OX = 10116 GN = Coq3 PE = 2 SV = 2	2.12e- 52	Motabolism
1	2900	3	1108.89	0.11	CL3706Contig1 1_5	sp Q03168 ASPP_AEDAE Lysosomal aspartic protease OS = Aedes aegypti OX = 7159 GN = AAEL006169 PE = 1 SV = 2	1.09e- 150	Metabolism
CL3812Contig1 _1	7028	21465 8	736.27	0.07	CL3812Contig1_ 1_6	sp B1A4F7 VDDP4_VESVU Venom dipeptidyl peptidase 4 OS = Vespula vulgaris OX = 7454 PE = 1 SV = 1	7.39e- 125	Peptide Maturation
CL4093Contig1 _1	1360	18895 7	648.12	0.06	CL4093Contig1_ 1_2	sp O96647 RL10_BOMMA 60S ribosomal protein L10 OS = Bombyx mandarina OX = 7092 GN = RpL10 PE = 2 SV = 1	4.54e- 74	Translation

CL4128Contig1 _1	2237	10249 6	351.56	0.04							
CL4129Contig1 _1	1117	24621 9	844.53	0.08	CL4129Contig1_ 1_6	sp Q10416 HYTA_APIME Hymenoptaecin OS = Apis mellifera OX = 7460 PE = 2 SV = 1	9.76e- 18	Immunity			
CL4173Contig1 _1	3705	34349 7	1178.19	0.12	CL4173Contig1_ 1_4	sp P0CG71 UBIQ1_CAEEL Polyubiquitin-A OS = Caenorhabditis elegans OX = 6239 GN = ubq-1 PE = 3 SV = 1	0.0	Protein Degradation			
CL4485Contig1 _1	3472	17752 7	608.92	0.06	CL4485Contig1_ 1_4	sp Q962R9 RS10_SPOFR 40S ribosomal protein S10 OS = Spodoptera frugiperda OX = 7108 GN = RpS10 PE = 2 SV = 1	4.44e- 70	Translation			
CL4642Contig1 _1	1666	70936 5	2433.11	0.24	CL4642Contig1_ 1_2	sp Q9W1C9 PEB3_DROME Ejaculatory bulb-specific protein 3 OS = Drosophila melanogaster OX = 7227 GN = EbpIII PE = 2 SV = 2	1.26e- 23	Secreted Protein			
CL479Contig1_ 5	2010	26274 73	9012.21	0.9	CL479Contig1_5 _5	sp Q9U639 HSP7D_MANSE Heat shock 70 kDa protein cognate 4 OS = Manduca sexta OX = 7130 PE = 2 SV = 1	0.0	Protein Maturation			
CL479Contig1_ 6	1340	22014 2	755.08	0.08	CL479Contig1_6 _5	sp Q9U639 HSP7D_MANSE Heat shock 70 kDa protein cognate 4 OS = Manduca sexta OX = 7130 PE = 2 SV = 1	2.18e- 106	Protein Maturation			
CL4957Contig1 3657 _1	2657	17247	E01 E9	0.06	CL4957Contig1_ 1_3	sp A8CAG3 RL17_PHLPP 60S ribosomal protein L17 OS = Phlebotomus papatasi OX = 29031 GN = RpL17 PE = 2 SV = 1	6.52e- 100	Translation			
	4	371.30	0.00	0.00	0.00	0.00	0.00		CL4957Contig1_ 1_6	sp Q7L1I2 SV2B_HUMAN Synaptic vesicle glycoprotein 2B OS = Homo sapiens OX = 9606 GN = SV2B PE = 1 SV = 1	4.67e- 49
CL5058Contig1 _1	1235	27966 4	959.24	0.1	CL5058Contig1_ 1_4	sp Q02878 RL6_HUMAN 60S ribosomal protein L6 OS = Homo sapiens OX = 9606 GN = RPL6 PE = 1 SV = 3	7.07e- 58	Translation			
CL521Contig1_ 1	852	88633 7	3040.13	0.3	CL521Contig1_1 _6	sp P46782 RS5_HUMAN 40S ribosomal protein S5 OS = Homo sapiens OX = 9606 GN = RPS5 PE = 1 SV = 4	7.92e- 122	Translation			
CL552Contig1_ 4	673	20935 7	718.09	0.07	CL552Contig1_4 _6	sp Q962T5 RL24_SPOFR 60S ribosomal protein L24 OS = Spodoptera frugiperda OX = 7108 GN = RpL24 PE = 2 SV = 1	2.07e- 72	Translation			
CL573Contig1_ 1	600	26496 2	908.82	0.09	CL573Contig1_1 _2	sp Q6XIM8 RS15A_DROYA 40S ribosomal protein S15a OS = Drosophila yakuba OX = 7245 GN = RpS15Aa PE = 2 SV = 3	5.18e- 84	Translation			

CL575Contig1_ 1	1770	19346 8	663.59	0.07					
	1000	. 14794		0.05	CL5Contig7_4_2	sp P47830 RL27A_XENLA 60S ribosomal protein L27a OS = Xenopus laevis OX = 8355 GN = rpl27a PE = 2 SV = 2	6.25e- 76	RNA	
CL5Contig/_4	1923	9	507.46	0.05	CL5Contig7_4_4	sp Q6AXT8 SF3A2_RAT Splicing factor 3A subunit 2 OS = Rattus norvegicus OX = 10116 GN = Sf3a2 PE = 2 SV = 1	4.48e- 112	/Translation	
CL660Contig1_ 1	3987	13361 7	458.3	0.05	CL660Contig1_1 _5	sp Q1HRV8 ELVL1_AEDAE Elongation of very long chain fatty acids protein AAEL008004 OS = Aedes aegypti OX = 7159 GN = AAEL008004 PE = 2 SV = 2	2.28e- 105	Metabolism	
CL669Contig1_ 1	16668	18023 0	618.19	0.06	CL669Contig1_1 _6	sp B6RSP1 PKHA7_DANRE Pleckstrin homology domain-containing family A member 7 OS = Danio rerio OX = 7955 GN = plekha7 PE = 2 SV = 2	2.99e- 37	Secretion	
CL955Contig1_ 1	694	19726 8	676.63	0.07	CL955Contig1_1 _6	sp Q8WRP6 PBGP9_SOLGI Pheromone-binding protein Gp-9 OS = Solenopsis globularia littoralis OX = 176593 GN = Gp-9 PE = 3 SV = 1	3.49e- 09	Chemoreceptio n	
k25_Locus_1003 9_Transcript_1_ 1	2851	15248 9	523.04	0.05					
					k25_Locus_108_T	sp P29240 5NTD_DIPOM 5'-nucleotidase OS = Diplohatis ommata OX = 1870830 PE = 2 SV = 1	2.49e- 71		
k25_Locus_108_ Transcript_2_5	3260	20972 6	719.36	0.07	k25_Locus_108_T ranscript_2_5_6	sp Q9XZ43 5NTD_LUTLO Protein 5NUC OS = Lutzomyia longipalpis OX = 7200 GN = 5NUC PE = 1 SV = 1	1.09e- 34	Metabolism	
k25 Logue 11		52710			k25_Locus_11_Tr	sp Q3ZU95 PA1_VESGE Phospholipase A1 OS =	1.55e-		
Transcript_31_1	6299	32	32 18079.59	18079.59	1.81	k25_Locus_11_Tr anscript_31_1_6	sp Q68KK0 PA1_SOLIN Phospholipase A1 OS = Solenopsis invicta OX = 13686 PE = 1 SV = 1	2.07e- 26	Phospholipase
k25_Locus_1163 _Transcript_8_3	710	12177 4	417.68	0.04	k25_Locus_1163_ Transcript_8_3_5	sp Q9NB33 RL44_OCHTR 60S ribosomal protein L44 OS = Ochlerotatus triseriatus OX = 7162 GN = RpL44 PE = 3 SV = 3	4.23e- 58	Translation	
k25_Locus_1168 _Transcript_5_1	5138	10234 3	351.04	0.04	k25_Locus_1168_ Transcript_5_1_1	sp Q9CR60 GOT1B_MOUSE Vesicle transport protein GOT1B OS = Mus musculus OX = 10090 GN = Golt1b PE = 1 SV = 1	7.79e- 34	Metabolism	
					k25_Locus_1168_ Transcript_5_1_6	sp Q7PQV7 ADT2_ANOGA ADP.ATP carrier protein 2 OS = Anopheles gambiae OX = 7165 GN = AGAP002358 PE = 3 SV = 2	3.43e- 173		
--	------	-------------	----------	------	--	--	---------------	-----------------------	
k25_Locus_1204 _Transcript_6_1	2284	25238 3	865.67	0.09	k25_Locus_1204_ Transcript_6_1_5	sp Q4GXG7 RL18_TIMBA 60S ribosomal protein L18 OS = Timarcha balearica OX = 79517 GN = RpL18 PE = 2 SV = 1	1.45e- 105	Translation	
k25_Locus_1236 _Transcript_1_1	1266	41243 4	1414.64	0.14	k25_Locus_1236_ Transcript_1_1_4	sp P41822 FRI_AEDAE Ferritin subunit OS = Aedes aegypti OX = 7159 GN = FERH PE = 1 SV = 2	1.46e- 41	Metabolism	
k25_Locus_126_ Transcript_5_1	5493	37786 23	12960.64	1.3				Metabolism	
k25_Locus_1289 _Transcript_17_ 4	1122	14567 2	499.65	0.05	k25_Locus_1289_ Transcript_17_4_ 1	sp P47830 RL27A_XENLA 60S ribosomal protein L27a OS = Xenopus laevis OX = 8355 GN = rpl27a PE = 2 SV = 2	6.25e- 76	Translation	
k25_Locus_1373	2718	54186	1858 50	0 10	k25_Locus_1373_ Transcript_14_1_ 2	sp Q9V447 KRH2_DROME Krueppel homolog 2 OS = Drosophila melanogaster OX = 7227 GN = Kr-h2 PE = 1 SV = 1	6.94e- 59	Protein Maturation	
_11aliscript_14_ 1	2710	4	1000.07	0.17	k25_Locus_1373_ Transcript_14_1_ 5	sp Q5R465 RS3_PONAB 40S ribosomal protein S3 OS = Pongo abelii OX = 9601 GN = RPS3 PE = 2 SV = 1	7.22e- 52	/Translation	
k25_Locus_165_ Transcript_2_1	833	43310 0	1485.53	0.15	k25_Locus_165_T ranscript_2_1_1	sp P58375 RL30_SPOFR 60S ribosomal protein L30 OS = Spodoptera frugiperda OX = 7108 GN = RpL30 PE = 3 SV = 1	3.37e- 59	Translation	
k25_Locus_182_ Transcript_10_1	4550	13659 0	468.5	0.05	k25_Locus_182_T ranscript_10_1_3	sp Q7KN62 TERA_DROME Transitional endoplasmic reticulum ATPase TER94 OS = Drosophila melanogaster OX = 7227 GN = TER94 PE = 1 SV = 1	0.0	Secretion	
k25_Locus_1873	957	11074	379.84	0.04	k25_Locus_1873_ Transcript_1_1_3	sp Q8VZ67 Y4919_ARATH Uncharacterized zinc finger CCHC domain-containing protein At4g19190 OS = Arabidopsis thaliana OX = 3702 GN = At4g19190 PE = 2 SV = 1	0.54	Oxidative	
_11anscript_1_1		Z			k25_Locus_1873_ Transcript_1_1_6	sp Q9V3P0 PRDX1_DROME Peroxiredoxin 1 OS = Drosophila melanogaster OX = 7227 GN = Jafrac1 PE = 1 SV = 1	4.60e- 105	511655	

k25_Locus_21_ Transcript_3_1	3913	58584 8	2009.45	0.2	k25_Locus_21_Tr anscript_3_1_5	sp P29844 BIP_DROME Endoplasmic reticulum chaperone BiP OS = Drosophila melanogaster OX = 7227 GN = Hsc70-3 PE = 1 SV = 2	0.0	Protein Maturation
k25_Locus_217_ Transcript_4_2	1995	34872 4	1196.12	0.12	k25_Locus_217_T ranscript_4_2_4	sp Q8TCT9 HM13_HUMAN Minor histocompatibility antigen H13 OS = Homo sapiens OX = 9606 GN = HM13 PE = 1 SV = 1	5.37e- 131	Protein Maturation
k25_Locus_2186 _Transcript_2_3	3394	14393 4	493.69	0.05				
k25_Locus_2191 _Transcript_12_ 3	3159	13603 4	466.6	0.05	k25_Locus_2191_ Transcript_12_3_ 1	sp Q9V778 ADAS_DROME Alkyldihydroxyacetonephosphate synthase OS = Drosophila melanogaster OX = 7227 GN = ADPS PE = 2 SV = 1	0.0	Metabolism
k25_Locus_254_ Transcript_4_4	3407	11817 1	405.33	0.04	k25_Locus_254_T ranscript_4_4_1	sp O08623 SQSTM_RAT Sequestosome-1 OS = Rattus norvegicus OX = 10116 GN = Sqstm1 PE = 1 SV = 1	9.72e- 30	Protein Degradation
k25_Locus_2739 _Transcript_4_1	2745	16403 3	562.63	0.06	k25_Locus_2739_ Transcript_4_1_5	sp O96567 DDC_DROSI Aromatic-L-amino-acid decarboxylase OS = Drosophila simulans OX = 7240 GN = Ddc PE = 3 SV = 2	3.23e- 170	Metabolism
k25_Locus_317_ Transcript_5_2	2304	14700 4	504.22	0.05	k25_Locus_317_T ranscript_5_2_5	sp Q9VYY4 C4G15_DROME Cytochrome P450 4g15 OS = Drosophila melanogaster OX = 7227 GN = Cyp4g15 PE = 2 SV = 1	4.21e- 175	Metabolism
k25_Locus_3207 _Transcript_3_1	3472	13091 4	449.03	0.04	k25_Locus_3207_ Transcript_3_1_3	sp Q8MQS8 SP34_APIME Venom serine protease 34 OS = Apis mellifera OX = 7460 PE = 2 SV = 1	1.18e- 90	Secreted Protein
k25_Locus_3286 _Transcript_1_1	894	23134 1	793.5	0.08	k25_Locus_3286_ Transcript_1_1_3	sp Q962U0 RL13A_SPOFR 60S ribosomal protein L13a OS = Spodoptera frugiperda OX = 7108 GN = RpL13A PE = 2 SV = 1	1.91e- 105	Translation
k25_Locus_3385 _Transcript_1_1	1257	48992 3	1680.43	0.17	k25_Locus_3385_ Transcript_1_1_3	sp Q5UAP4 RSSA_BOMMO 40S ribosomal protein SA OS = Bombyx mori OX = 7091 PE = 2 SV = 1	1.39e- 124	Translation
k25_Locus_3520 _Transcript_10_ 1	3033	36303 3	1245.2	0.12	k25_Locus_3520_ Transcript_10_1_ 2	sp Q3UST5 CP089_MOUSE UPF0764 protein C16orf89 homolog OS = Mus musculus OX = 10090 PE = 2 SV = 2	1.05e- 18	Unknown
k25_Locus_3576 _Transcript_3_1	1701	19106 4	655.35	0.07	k25_Locus_3576_ Transcript_3_1_5	sp Q5R8Z6 MCFD2_PONAB Multiple coagulation factor deficiency protein 2 homolog OS = Pongo abelii OX = 9601 GN = MCFD2 PE = 2 SV = 1	2.41e- 19	Secretion

k25_Locus_402_ Transcript_3_1	554	16700 6	572.83	0.06	k25_Locus_402_T ranscript_3_1_4	sp P80455 RS12_DROME 40S ribosomal protein S12 OS = Drosophila melanogaster OX = 7227 GN = RpS12 PE = 1 SV = 2	1.23e- 58	Translation
k25_Locus_4241 _Transcript_1_1	674	12947 9	444.11	0.04	k25_Locus_4241_ Transcript_1_1_4	sp Q962Q5 RS25_SPOFR 40S ribosomal protein S25 OS = Spodoptera frugiperda OX = 7108 GN = RpS25 PE = 3 SV = 1	2.31e- 43	Translation
k25_Locus_433_ Transcript_9_1	4376	66650 2	2286.1	0.23		MKLITLFLVVVLAIFIRPLMPLQMRNTESFAEGSADAF AETNSDSIKI		Venom peptide
k25_Locus_45_ Transcript_1_1	5655	12758 16	4376.04	0.44	k25_Locus_45_Tr anscript_1_1_2	sp P07709 NU6M_DROYA NADH-ubiquinone oxidoreductase chain 6 OS = Drosophila yakuba OX = 7245 GN = mt:ND6 PE = 3 SV = 2	6.22e- 08	Metabolism
k25_Locus_4540 _Transcript_2_1	2437	15191 2	521.06	0.05	k25_Locus_4540_ Transcript_2_1_2	sp Q10714 ACE_DROME Angiotensin-converting enzyme OS = Drosophila melanogaster OX = 7227 GN = Ance PE = 1 SV = 3	0.0	Peptide Maturation
k25_Locus_4724 _Transcript_2_1	971	12573 4	431.27	0.04	k25_Locus_4724_ Transcript_2_1_5	sp Q962S0 RS7_SPOFR 40S ribosomal protein S7 OS = Spodoptera frugiperda OX = 7108 GN = RpS7 PE = 2 SV = 1	4.60e- 100	Translation
k25_Locus_54_	2425	39087	1340.69	0.13	k25_Locus_54_Tr anscript_3_1_4	sp Q9P735 FAL1_NEUCR ATP-dependent RNA helicase fal-1 OS = Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) OX = 367110 GN = fal-1 PE = 3 SV = 2	1.80e- 51	Translation
Transcript_3_1		4			k25_Locus_54_Tr anscript_3_1_6	sp Q02748 IF4A_DROME Eukaryotic initiation factor 4A OS = Drosophila melanogaster OX = 7227 GN = eIF4A PE = 1 SV = 3	8.73e- 84	-
k25_Locus_547_ Transcript_29_1	8082	14492 1	497.08	0.05	k25_Locus_547_T ranscript_29_1_3	sp Q767L8 MDC1_PIG Mediator of DNA damage checkpoint protein 1 OS = Sus scrofa OX = 9823 GN = MDC1 PE = 3 SV = 1	7.17e- 42	DNA Repair
k25_Locus_547_ Transcript_29_2	4580	13671 2	468.92	0.05	k25_Locus_547_T ranscript_29_2_4	sp P20735 GGT1_PIG Glutathione hydrolase 1 proenzyme OS = Sus scrofa OX = 9823 GN = GGT1 PE = 2 SV = 1	3.37e- 97	Metabolism
k25_Locus_575_ Transcript_4_1	3876	11240 9	385.56	0.04	k25_Locus_575_T ranscript_4_1_2	sp Q921M4 GOGA2_MOUSE Golgin subfamily A member 2 OS = Mus musculus OX = 10090 GN = Golga2 PE = 1 SV = 3	3.25e- 47	Translation

					k25_Locus_575_T ranscript_4_1_5	sp Q69CJ9 RL35_OPHHA 60S ribosomal protein L35 OS = Ophiophagus hannah OX = 8665 GN = RPL35 PE = 2 SV = 3	4.69e- 45	
k25_Locus_5867 _Transcript_4_1	4342	20252 1	694.64	0.07	k25_Locus_5867_ Transcript_4_1_5	sp P35415 MYSP1_DROME Paramyosin. long form OS = Drosophila melanogaster OX = 7227 GN = Prm PE = 1 SV = 1	0.0	Cytosqueleton
k25_Locus_737_ Transcript_1_1	1004	12314 1	422.37	0.04				
k25_Locus_7606 _Transcript_1_1	919	44160 0	1514.68	0.15	k25_Locus_7606_ Transcript_1_1_6	sp Q945U1 RS15_ELAOL 40S ribosomal protein S15 OS = Elaeis oleifera OX = 80265 GN = RPS15 PE = 2 SV = 1	4.01e- 77	Translation
k25_Locus_766_ Transcript_35_1	5458	22405 2	768.5	0.08				
k25_Locus_810_ Transcript_1_1	1343	41762 9	1432.46	0.14	k25_Locus_810_T ranscript_1_1_6	sp Q95V39 RL8_SPOFR 60S ribosomal protein L8 OS = Spodoptera frugiperda OX = 7108 GN = RpL8 PE = 2 SV = 1	3.25e- 157	Translation
k25_Locus_97_ Transcript_10_3	1564	13667 40	4687.9	0.47	k25_Locus_97_Tr anscript_10_3_5	sp Q9U639 HSP7D_MANSE Heat shock 70 kDa protein cognate 4 OS = Manduca sexta OX = 7130 PE = 2 SV = 1	0.0	Protein Maturation
k25_Locus_9770 _Transcript_4_1	684	33321 7	1142.93	0.11				
k31_Locus_1107	2470	10521	260.80	0.04	k31_Locus_11079 _Transcript_6_1_ 2	sp Q58ED9 NAA20_DANRE N-alpha-acetyltransferase 20 OS = Danio rerio OX = 7955 GN = naa20 PE = 2 SV = 1	3.15e- 87	Protein
9_11anscript_0_ 1	2470	6	300.89	0.04	k31_Locus_11079 _Transcript_6_1_ 3	sp Q5M8Y1 SPCS2_XENTR Probable signal peptidase complex subunit 2 OS = Xenopus tropicalis OX = 8364 GN = spcs2 PE = 2 SV = 1	1.72e- 58	Maturation
k31_Locus_1149	4540	25590	877.76	0.09	k31_Locus_1149_ Transcript_6_1_2	sp P9WQP7 3BHS_MYCTU 3 beta-hydroxysteroid dehydrogenase/Delta 5>4-isomerase OS = Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) OX = 83332 GN = Rv1106c PE = 1 SV = 1	4.48e- 04	Translation
_1ranscript_6_1		7			k31_Locus_1149_ Transcript_6_1_6	sp Q4GXG7 RL18_TIMBA 60S ribosomal protein L18 OS = Timarcha balearica OX = 79517 GN = RpL18 PE = 2 SV = 1	1.45e- 105	

k31_Locus_1256 _Transcript_1_2	1926	13884 8	476.25	0.05	k31_Locus_1256_ Transcript_1_2_5	sp P70195 PSB7_MOUSE Proteasome subunit beta type- 7 OS = Mus musculus OX = 10090 GN = Psmb7 PE = 1 SV = 1	7.33e- 108	Protein Degradation
k31_Locus_1299 _Transcript_4_1	2874	15767 87	5408.36	0.54				
k31_Locus_142_ Transcript_2_1	492	34049 3	1167.89	0.12	k31_Locus_142_T ranscript_2_1_2	sp Q963B7 RL9_SPOFR 60S ribosomal protein L9 OS = Spodoptera frugiperda OX = 7108 GN = RpL9 PE = 2 SV = 1	2.22e- 98	Translation
k31_Locus_1543 _Transcript_1_1	2987	24572 9	842.85	0.08	k31_Locus_1543_ Transcript_1_1_4	sp Q962R6 RS13_SPOFR 40S ribosomal protein S13 OS = Spodoptera frugiperda OX = 7108 GN = RpS13 PE = 2 SV = 3	1.70e- 87	Translation
k31_Locus_1653 _Transcript_2_1	1702	48776 4	1673.03	0.17				
k31_Locus_1695 _Transcript_9_1	4325	14030 9	481.26	0.05	k31_Locus_1695_ Transcript_9_1_6	sp P30151 EF1B_XENLA Elongation factor 1-beta OS = Xenopus laevis OX = 8355 GN = eef1b PE = 1 SV = 3	7.13e- 75	Translation
k31_Locus_179_ Transcript_1_1	5057	17493 6	600.03	0.06	k31_Locus_179_T ranscript_1_1_4	sp P41824 YBOXH_APLCA Y-box factor homolog OS = Aplysia californica OX = 6500 PE = 2 SV = 1	3.61e- 42	Transcription
k31_Locus_1890 _Transcript_11_ 1	2810	75410 3	2586.57	0.26	k31_Locus_1890_ Transcript_11_1_ 2	sp Q5BLY4 ICA_APIME Icarapin-like OS = Apis mellifera OX = 7460 PE = 2 SV = 1	7.08e- 23	Secreted Protein
k31_Locus_1920 _Transcript_1_1	866	24388 4	836.52	0.08	k31_Locus_1920_ Transcript_1_1_4	sp P39018 RS19A_DROME 40S ribosomal protein S19a OS = Drosophila melanogaster OX = 7227 GN = RpS19a PE = 1 SV = 3	2.43e- 62	Translation
k31_Locus_21_ Transcript_1_1	2877	38506 7	1320.78	0.13	k31_Locus_21_Tr anscript_1_1_4	sp P29844 BIP_DROME Endoplasmic reticulum chaperone BiP OS = Drosophila melanogaster OX = 7227 GN = Hsc70-3 PE = 1 SV = 2	0.0	Protein Maturation
k31_Locus_2212 _Transcript_4_2	1771	29924 9	1026.42	0.1	k31_Locus_2212_ Transcript_4_2_6	sp P30050 RL12_HUMAN 60S ribosomal protein L12 OS = Homo sapiens OX = 9606 GN = RPL12 PE = 1 SV = 1	2.65e- 86	Translation
k31_Locus_222_ Transcript_2_1	2655	10689 9	366.66	0.04	k31_Locus_222_T ranscript_2_1_5	sp P13008 RS26_DROME 40S ribosomal protein S26 OS = Drosophila melanogaster OX = 7227 GN = RpS26 PE = 1 SV = 1	3.98e- 58	Translation
k31_Locus_261_ Transcript_21_1	2728	46402 91	15916.15	1.59	k31_Locus_261_T ranscript_21_1_5	sp P35778 VA3_SOLIN Venom allergen 3 OS = Solenopsis invicta OX = 13686 PE = 1 SV = 2	1.05e- 74	Venom allergen

11 of 25

k31_Locus_263_ Transcript_6_1	2222	53040 3	1819.28	0.18	k31_Locus_263_T ranscript_6_1_5	sp P09180 RL4_DROME 60S ribosomal protein L4 OS = Drosophila melanogaster OX = 7227 GN = RpL4 PE = 1 SV = 2	4.42e- 168	Translation
k31_Locus_3_Tr anscript_5_1	3218	13926 0	477.66	0.05	k31_Locus_3_Tra nscript_5_1_6	sp B4MGF8 TMEDA_DROVI Transmembrane emp24 domain-containing protein bai OS = Drosophila virilis OX = 7244 GN = bai PE = 3 SV = 1	2.19e- 83	Secretion
k31_Locus_3122 _Transcript_1_1	809	29971 9	1028.03	0.1	k31_Locus_3122_ Transcript_1_1_5	sp Q9W6Y0 RS30_ORYLA 40S ribosomal protein S30 OS = Oryzias latipes OX = 8090 GN = fau PE = 3 SV = 2	3.40e- 19	Translation
k31_Locus_3178 _Transcript_1_1	3098	11667 4	400.19	0.04	k31_Locus_3178_ Transcript_1_1_4	sp P05300 LAMP1_CHICK Lysosome-associated membrane glycoprotein 1 OS = Gallus gallus OX = 9031 GN = LAMP1 PE = 2 SV = 1	1.54e- 23	Protein Degradation
k31_Locus_3301 _Transcript_10_ 1	3031	31922 4	1094.94	0.11	k31_Locus_3301_ Transcript_10_1_ 5	sp Q3UST5 CP089_MOUSE UPF0764 protein C16orf89 homolog OS = Mus musculus OX = 10090 PE = 2 SV = 2	1.05e- 18	Unknown
k31_Locus_3808 _Transcript_1_1	1088	12412 6	425.75	0.04	k31_Locus_3808_ Transcript_1_1_4	sp P41973 SODC_DROWI Superoxide dismutase [Cu- Zn] OS = Drosophila willistoni OX = 7260 GN = Sod1 PE = 3 SV = 2	8.40e- 63	Oxidative stress
k31_Locus_431_ Transcript_14_2	3857	10294 9	353.11	0.04	k31_Locus_431_T ranscript_14_2_6	sp Q9VAF0 S39AD_DROME Zinc transporter ZIP13 homolog OS = Drosophila melanogaster OX = 7227 GN = Zip99C PE = 2 SV = 1	2.00e- 52	Metabolism
k31_Locus_49_ Transcript_12_1	5983	79235 00	27177.53	2.72		U4-PSDTX-Ta1a Genbank Accession Numbers : MN607167		Venom peptide
k31_Locus_5020 _Transcript_1_1	970	18781 4	644.2	0.06	k31_Locus_5020_ Transcript_1_1_4	sp P46222 RL11_DROME 60S ribosomal protein L11 OS = Drosophila melanogaster OX = 7227 GN = RpL11 PE = 1 SV = 2	3.13e- 106	Translation
k31_Locus_597_ Transcript_7_1	3991	10574 43	3627.02	0.36	k31_Locus_597_T ranscript_7_1_3	sp P29520 EF1A_BOMMO Elongation factor 1-alpha OS = Bombyx mori OX = 7091 PE = 2 SV = 1	0.0	Translation
k31_Locus_647_ Transcript_12_3	840	13319 3	456.85	0.05	k31_Locus_647_T ranscript_12_3_3	sp B4PEU8 RS9_DROYA 40S ribosomal protein S9 OS = Drosophila yakuba OX = 7245 GN = RpS9 PE = 2 SV = 1	7.76e- 111	Translation
k31_Locus_66_ Transcript_1_1	1672	16193 99	5554.52	0.56	k31_Locus_66_Tr anscript_1_1_6	sp Q75VN3 TCTP_BOMMO Translationally-controlled tumor protein homolog OS = Bombyx mori OX = 7091 GN = Tctp PE = 2 SV = 1	1.48e- 91	Cytosqueleton

k31_Locus_725_ Transcript_46_1	5204	26121 6	895.97	0.09				
k31_Locus_725_ Transcript_46_2	3694	77183 3	2647.38	0.26				
k31_Locus_82_	3549	60242	2066.31	0.21	k31_Locus_82_Tr anscript_7_2_2	sp Q27294 CAZ_DROME RNA-binding protein cabeza OS = Drosophila melanogaster OX = 7227 GN = caz PE = 2 SV = 2	1.71e- 39	Transcription /
Transcript_7_2		5			k31_Locus_82_Tr anscript_7_2_6	sp Q9D2C7 BI1_MOUSE Bax inhibitor 1 OS = Mus musculus OX = 10090 GN = Tmbim6 PE = 1 SV = 1	1.59e- 55	Apoptosis
k31_Locus_852_ Transcript_8_1	3795	20186 5	692.39	0.07	k31_Locus_852_T ranscript_8_1_1	sp P07602 SAP_HUMAN Prosaposin OS = Homo sapiens OX = 9606 GN = PSAP PE = 1 SV = 2	6.86e- 38	Cellular Signaling
k31_Locus_853_	2089	64331	2206.57	0.22	k31_Locus_853_T ranscript_3_1_3	sp Q8TGP1 YG123_YEAST Putative uncharacterized protein YGL123C-A OS = Saccharomyces cerevisiae (strain ATCC 204508 / S288c) OX = 559292 GN = YGL123C-A PE = 5 SV = 1	8.72e- 05	Translation
franscript_5_1		0			k31_Locus_853_T ranscript_3_1_5	sp P31009 RS2_DROME 40S ribosomal protein S2 OS = Drosophila melanogaster OX = 7227 GN = RpS2 PE = 1 SV = 2	1.43e- 131	
k31_Locus_892_ Transcript_3_1	1895	33799 8	1159.33	0.12	k31_Locus_892_T ranscript_3_1_6	sp P19889 RLA0_DROME 60S acidic ribosomal protein P0 OS = Drosophila melanogaster OX = 7227 GN = RpLP0 PE = 1 SV = 1	2.17e- 155	Translation
k31_Locus_899_ Transcript_10_2	2221	11228 4	385.13	0.04	k31_Locus_899_T ranscript_10_2_5	sp Q58FK9 KAT3_RAT Kynurenineoxoglutarate transaminase 3 OS = Rattus norvegicus OX = 10116 GN = Kyat3 PE = 2 SV = 1	5.44e- 128	Protein Maturation
k31 Locus 984		12998			k31_Locus_984_T ranscript_1_1_2	sp Q8CBY8 DCTN4_MOUSE Dynactin subunit 4 OS = Mus musculus OX = 10090 GN = Dctn4 PE = 1 SV = 1	4.98e- 101	Cytosqueleton/
Transcript_1_1	2900	5	445.85	0.04	k31_Locus_984_T ranscript_1_1_4	sp C0HKA1 RS14B_DROME 40S ribosomal protein S14b OS = Drosophila melanogaster OX = 7227 GN = RpS14b PE = 2 SV = 1	7.47e- 85	Translation
k37_Locus_1_Tr anscript_1_2	4050	13660 2	468.54	0.05	k37_Locus_1_Tra nscript_1_2_5	sp Q4U3L0 G3P_GLOMM Glyceraldehyde-3-phosphate dehydrogenase OS = Glossina morsitans morsitans OX = 37546 GN = Gapdh PE = 2 SV = 1	0.0	Metabolism

k37_Locus_10_ Transcript_14_1	4476	54127 7	1856.57	0.19	k37_Locus_10_Tr anscript_14_1_6	sp Q68KK0 PA1_SOLIN Phospholipase A1 OS = Solenopsis invicta OX = 13686 PE = 1 SV = 1	1.54e- 51	Phospholipase
k37_Locus_1071 _Transcript_2_1	2105	10374 6	355.85	0.04	k37_Locus_1071_ Transcript_2_1_5	sp Q4GXG7 RL18_TIMBA 60S ribosomal protein L18 OS = Timarcha balearica OX = 79517 GN = RpL18 PE = 2 SV = 1	8.75e- 70	Translation
k37_Locus_1280 _Transcript_9_1	9989	13389 1	459.24	0.05	k37_Locus_1280_ Transcript_9_1_6	sp Q24238 APH4_DROME Alkaline phosphatase 4 OS = Drosophila melanogaster OX = 7227 GN = Alp4 PE = 2 SV = 3	1.50e- 66	Metabolism
k37_Locus_1441 _Transcript_3_4	3432	13890 5	476.44	0.05	k37_Locus_1441_ Transcript_3_4_6	sp Q2PQM7 IDGF4_GLOMM Chitinase-like protein Idgf4 OS = Glossina morsitans morsitans OX = 37546 GN = Idgf4 PE = 2 SV = 1	9.23e- 120	Cellular Signaling
k37_Locus_1903 _Transcript_4_2	4559	15433 7	529.37	0.05	k37_Locus_1903_ Transcript_4_2_4	sp P28648 CD63_RAT CD63 antigen OS = Rattus norvegicus OX = 10116 GN = Cd63 PE = 1 SV = 2	3.33e- 29	Cellular Signaling
k37_Locus_229_ Transcript_6_1	4838	23686 7	812.45	0.08				
k37_Locus_2459 _Transcript_1_1	1204	30142 9	1033.9	0.1	k37_Locus_2459_ Transcript_1_1_4	sp Q962U1 RL13_SPOFR 60S ribosomal protein L13 OS = Spodoptera frugiperda OX = 7108 GN = RpL13 PE = 2 SV = 1	6.25e- 94	Translation
k37_Locus_2720 _Transcript_1_1	517	15861 3	544.04	0.05				
k37_Locus_3057 _Transcript_4_1	4291	12819 4	439.7	0.04				
k37_Locus_391_ Transcript_6_2	4093	12387 9	424.9	0.04	k37_Locus_391_T ranscript_6_2_6	sp Q1HRV8 ELVL1_AEDAE Elongation of very long chain fatty acids protein AAEL008004 OS = Aedes aegypti OX = 7159 GN = AAEL008004 PE = 2 SV = 2	2.63e- 105	Metabolism
k37_Locus_4169 _Transcript_1_1	1410	26823 3	920.04	0.09	k37_Locus_4169_ Transcript_1_1_3	sp P15357 RS27A_DROME Ubiquitin-40S ribosomal protein S27a OS = Drosophila melanogaster OX = 7227 GN = RpS27A PE = 1 SV = 2	8.86e- 83	Protein Degradation
k37_Locus_4367 _Transcript_1_1	1554	13859 3	475.37	0.05	k37_Locus_4367_ Transcript_1_1_5	sp Q4GXU6 RS4_CARGR 40S ribosomal protein S4 OS = Carabus granulatus OX = 118799 GN = RpS4 PE = 2 SV = 1	3.47e- 152	Translation
k37_Locus_45_ Transcript_14_1	5685	26654 401	91424.33	9.14		U1-PSDTX-Ta1a/U4-PSDTX-Ta1a/U5-PSDTX-Ta1a Genbank Accession Numbers : MN607166/ MN607167/ MN607171		Venom peptide

k37_Locus_472_ Transcript_5_3	2292	19416 1	665.97	0.07	k37_Locus_472_T ranscript_5_3_6	sp Q08169 HUGA_APIME Hyaluronidase OS = Apis mellifera OX = 7460 PE = 1 SV = 1	1.46e- 55	Metabolism
k37_Locus_472_ Transcript_5_4	2275	26884 2	922.13	0.09	k37_Locus_472_T ranscript_5_4_6	sp Q08169 HUGA_APIME Hyaluronidase OS = Apis mellifera OX = 7460 PE = 1 SV = 1	5.72e- 59	Metabolism
k37_Locus_49_ Transcript_3_1	3765	86335 7	2961.31	0.3	k37_Locus_49_Tr anscript_3_1_5	sp Q02748 IF4A_DROME Eukaryotic initiation factor 4A OS = Drosophila melanogaster OX = 7227 GN = eIF4A PE = 1 SV = 3	1.23e- 138	Translation
k37_Locus_49_ Transcript_3_2	512	32744 5	1123.13	0.11				
k37_Locus_540_ Transcript_2_1	2408	21402 8	734.11	0.07	k37_Locus_540_T ranscript_2_1_4	sp Q9VBV3 TAKT_DROME Protein takeout OS = Drosophila melanogaster OX = 7227 GN = to PE = 2 SV = 1	1.26e- 08	Circadian Rythm
k37_Locus_544_ Transcript_9_1	2629	18926 3	649.17	0.06				
k37_Locus_594_ Transcript_7_2	3499	16843 3	577.72	0.06	k37_Locus_594_T ranscript_7_2_5	sp Q9GPH3 ATFC_BOMMO Activating transcription factor of chaperone OS = Bombyx mori OX = 7091 GN = ATFC PE = 2 SV = 1	5.72e- 26	Protein Maturation
k37_Locus_6671 _Transcript_1_1	2238	40955 2	1404.76	0.14	k37_Locus_6671_ Transcript_1_1_1	sp P36241 RL19_DROME 60S ribosomal protein L19 OS = Drosophila melanogaster OX = 7227 GN = RpL19 PE = 1 SV = 2	4.25e- 89	Translation
k37_Locus_795_ Transcript_8_1	2389	48076 9	1649.03	0.16	k37_Locus_795_T ranscript_8_1_2	sp O16797 RL3_DROME 60S ribosomal protein L3 OS = Drosophila melanogaster OX = 7227 GN = RpL3 PE = 1 SV = 3	0.0	Translation
k37_Locus_87_ Transcript_5_1	2675	27992 6	960.14	0.1	k37_Locus_87_Tr anscript_5_1_4	sp P21187 PABP_DROME Polyadenylate-binding protein OS = Drosophila melanogaster OX = 7227 GN = pAbp PE = 1 SV = 3	0.0	RNA Maturation
k37_Locus_921_ Transcript_7_2	1145	29579 8	1014.58	0.1	k37_Locus_921_T ranscript_7_2_4	sp C0HKA1 RS14B_DROME 40S ribosomal protein S14b OS = Drosophila melanogaster OX = 7227 GN = RpS14b PE = 2 SV = 1	7.47e- 85	Translation
k37_Locus_9365 _Transcript_5_1	3029	19822 8	679.92	0.07	k37_Locus_9365_ Transcript_5_1_3	sp Q5ZIR1 SHLB1_CHICK Endophilin-B1 OS = Gallus gallus OX = 9031 GN = SH3GLB1 PE = 2 SV = 1	3.22e- 64	Secretion / Translation

					k37_Locus_9365_ Transcript_5_1_6	sp Q962R1 RS18_SPOFR 40S ribosomal protein S18 OS = Spodoptera frugiperda OX = 7108 GN = RpS18 PE = 2 SV = 1	9.35e- 85	
k43_Locus_114_ Transcript_2_1	2476	21420 0	734.7	0.07	k43_Locus_114_T ranscript_2_1_6	sp Q963B7 RL9_SPOFR 60S ribosomal protein L9 OS = Spodoptera frugiperda OX = 7108 GN = RpL9 PE = 2 SV = 1	3.81e- 91	Translation
k43_Locus_133_ Transcript_7_1	2837	80021 3	2744.72	0.27	k43_Locus_133_T ranscript_7_1_5 k43_Locus_133_T ranscript_7_1_5	sp Q3ZU95 PA1_VESGE Phospholipase A1 OS = Vespula germanica OX = 30212 PE = 2 SV = 1 sp Q68KK0 PA1_SOLIN Phospholipase A1 OS =	4.12e- 19 4.11e- 15	· Phospholipase
k43_Locus_1473 _Transcript_5_1	3652	40783 7	1398.88	0.14	k43_Locus_1473_ Transcript_5_1_3	sp P14318 MP20_DROME Muscle-specific protein 20 OS = Drosophila melanogaster OX = 7227 GN = Mp20 PE = 2 SV = 2	9.42e- 96	Cytosqueleton
k43_Locus_1496 _Transcript_10_ 1	2917	19614 4	672.77	0.07				
k43_Locus_1586 7_Transcript_1_ 1	600	44937 8	1541.36	0.15		U2-PSDTX-Ta1a Genbank Accession Number : MN607169		Venom peptide
k43_Locus_1586 7_Transcript_1_ 1 k43_Locus_209_ Transcript_2_5	600 3324	44937 8 11822 4	1541.36 405.51	0.15	k43_Locus_209_T ranscript_2_5_1	U2-PSDTX-Ta1a Genbank Accession Number : MN607169 sp O08623 SQSTM_RAT Sequestosome-1 OS = Rattus norvegicus OX = 10116 GN = Sqstm1 PE = 1 SV = 1	9.72e- 30	Venom peptide Protein Degradation
k43_Locus_1586 7_Transcript_1_ 1 k43_Locus_209_ Transcript_2_5 k43_Locus_3217 _Transcript_3_3	600 3324 1201	44937 8 11822 4 28214 7	1541.36 405.51 967.76	0.15 0.04 0.1	k43_Locus_209_T ranscript_2_5_1 k43_Locus_3217_ Transcript_3_3_4	U2-PSDTX-Ta1a Genbank Accession Number : MN607169 sp O08623 SQSTM_RAT Sequestosome-1 OS = Rattus norvegicus OX = 10116 GN = Sqstm1 PE = 1 SV = 1 sp P30736 RL15_CHITE 60S ribosomal protein L15 OS = Chironomus tentans OX = 7153 GN = RpL15 PE = 3 SV = 3	9.72e- 30 1.14e- 109	Venom peptide Protein Degradation Translation
k43_Locus_1586 7_Transcript_1_ 1 k43_Locus_209_ Transcript_2_5 k43_Locus_3217 _Transcript_3_3 k43_Locus_3840 _Transcript_4_2	600 3324 1201 2659	44937 8 11822 4 28214 7 16665 8	1541.36 405.51 967.76 571.64	0.15 0.04 0.1 0.06	k43_Locus_209_T ranscript_2_5_1 k43_Locus_3217_ Transcript_3_3_4 k43_Locus_3840_ Transcript_4_2_5	U2-PSDTX-Ta1a Genbank Accession Number : MN607169 sp O08623 SQSTM_RAT Sequestosome-1 OS = Rattus norvegicus OX = 10116 GN = Sqstm1 PE = 1 SV = 1 sp P30736 RL15_CHITE 60S ribosomal protein L15 OS = Chironomus tentans OX = 7153 GN = RpL15 PE = 3 SV = 3 sp Q9NV56 MRGBP_HUMAN MRG/MORF4L-binding protein OS = Homo sapiens OX = 9606 GN = MRGBP PE = 1 SV = 1	9.72e- 30 1.14e- 109 7.48e- 24	Venom peptide Protein Degradation Translation Transcription
k43_Locus_1586 7_Transcript_1_ 1 k43_Locus_209_ Transcript_2_5 k43_Locus_3217 _Transcript_3_3 k43_Locus_3840 _Transcript_4_2 k43_Locus_530_ Transcript_3_1	600 3324 1201 2659 1144	44937 8 11822 4 28214 7 16665 8 16856 3	1541.36 405.51 967.76 571.64 578.17	0.15 0.04 0.1 0.06 0.06	k43_Locus_209_T ranscript_2_5_1 k43_Locus_3217_ Transcript_3_3_4 k43_Locus_3840_ Transcript_4_2_5 k43_Locus_530_T ranscript_3_1_4	U2-PSDTX-Ta1a Genbank Accession Number : MN607169 sp O08623 SQSTM_RAT Sequestosome-1 OS = Rattus norvegicus OX = 10116 GN = Sqstm1 PE = 1 SV = 1 sp P30736 RL15_CHITE 60S ribosomal protein L15 OS = Chironomus tentans OX = 7153 GN = RpL15 PE = 3 SV = 3 sp Q9NV56 MRGBP_HUMAN MRG/MORF4L-binding protein OS = Homo sapiens OX = 9606 GN = MRGBP PE = 1 SV = 1 sp Q962R9 RS10_SPOFR 40S ribosomal protein S10 OS = Spodoptera frugiperda OX = 7108 GN = RpS10 PE = 2 SV = 1	9.72e- 30 1.14e- 109 7.48e- 24 4.44e- 70	Venom peptide Protein Degradation Translation Transcription Translation

k43_Locus_684_ Transcript_1_1	1148	12800 5	439.06	0.04				
k43_Locus_713_ Transcript 5 1	4230	11654 5	399.75	0.04	k43_Locus_713_T ranscript 5 1 1	sp Q14186 TFDP1_HUMAN Transcription factor Dp-1 OS = Homo sapiens OX = 9606 GN = TFDP1 PE = 1 SV = 1	1.18e- 99	Transcription
					k43_Locus_7363_	sp Q4GXU6 RS4_CARGR 40S ribosomal protein S4 OS =	2.03e-	
k42 Logue 7262		26140			Transcript_5_1_2	Carabus granulatus OX = 118799 GN = RpS4 PE = 2 SV = 1	166	
Transcript_5_1	3050	1	896.6	0.09	k43_Locus_7363_ Transcript_5_1_5	sp A4Q9E4 TTLL2_MOUSE Probable tubulin polyglutamylase TTLL2 OS = Mus musculus OX = 10090 GN = Ttll2 PE = 2 SV = 1	9.34e- 79	Translation
k43_Locus_82_	2674	76003	2606.01	0.26	k43_Locus_82_Tr anscript_8_5_4	sp Q9XZ43 5NTD_LUTLO Protein 5NUC OS = Lutzomyia longipalpis OX = 7200 GN = 5NUC PE = 1 SV = 1	9.94e- 78	Matabalian
Transcript_8_5	2074	3	2000.91	0.26	k43_Locus_82_Tr anscript_8_5_5	sp B6EWW8 V5NTD_GLOBR Snake venom 5'- nucleotidase OS = Gloydius brevicaudus OX = 259325 PE = 2 SV = 1	1.27e- 39	Metabolism
k49_Locus_1084 8_Transcript_1_ 1	915	15077 7	517.16	0.05	k49_Locus_10848 _Transcript_1_1_ 4	sp Q02878 RL6_HUMAN 60S ribosomal protein L6 OS = Homo sapiens OX = 9606 GN = RPL6 PE = 1 SV = 3	3.50e- 44	Translation
k49_Locus_1197 0_Transcript_2_ 1	2958	10816 3	371	0.04	k49_Locus_11970 _Transcript_2_1_ 2	sp P84185 ACT5C_ANOGA Actin-5C OS = Anopheles gambiae OX = 7165 GN = Act5C PE = 2 SV = 1	0.0	Cytosqueleton
k49_Locus_1327 _Transcript_9_1	7028	31908 7	1094.47	0.11				
k49_Locus_1493 _Transcript_10_ 1	3416	10165 4	348.67	0.03	k49_Locus_1493_ Transcript_10_1_ 2	sp Q2T9X3 SPRY7_BOVIN SPRY domain-containing protein 7 OS = Bos taurus OX = 9913 GN = SPRYD7 PE = 2 SV = 1	1.32e- 55	Protein Degradation
k49_Locus_1524 4_Transcript_1_ 1	350	10428 1	357.68	0.04				
k49_Locus_1637 _Transcript_10_ 1	5305	79982 9	2743.41	0.27	k49_Locus_1637_ Transcript_10_1_ 6	sp Q24238 APH4_DROME Alkaline phosphatase 4 OS = Drosophila melanogaster OX = 7227 GN = Alp4 PE = 2 SV = 3	3.33e- 121	Metabolism

				k49_Locus_2359_	sp Q9DA39 LFG4_MOUSE Protein lifeguard 4 OS = Mus	4.06e-	
				Transcript_3_1_3	musculus OX = 10090 GN = Tmbim4 PE = 2 SV = 1	56	Anti anontosis/
400	11662	400.00	0.04	k49_Locus_2359_	splQ6PFM4 LNPB_DANRE Endoplasmic reticulum	1.41e-	RE
4026	$\begin{array}{cccc} 6 & & & & & & & & & & & & & & & & & & &$			64	morphology/		
				k49_Locus_2359_	sp Q95WA0 RL26_LITLI 60S ribosomal protein L26 OS =	5.49e-	Translation
				Transcript_3_1_6	Littorina littorea OX = 31216 GN = RPL26 PE = 2 SV = 1	68	
2800	16931	E807 E4	0 50	k49_Locus_281_T	sp Q02942 TRF_BLADI Transferrin OS = Blaberus	0.0	Matabaliam
2099	64	3607.34	0.56	ranscript_3_1_4	discoidalis OX = 6981 PE = 1 SV = 1	0.0	Wietabolishi
1247	40416 1	1386.27	0.14				
	40001			1 40 I 000 T	sp P17892 LIPR2_MOUSE Pancreatic lipase-related	1.00	
2573	48/71	1672.87	0.17	K49_Locus_322_1	protein 2 OS = Mus musculus OX = 10090 GN = Pnliprp2	1.08e-	Phospholipase
	8		ranscript_9_4_5	PE = 1 SV = 2	86		
	07501			k49 Logue 397 T	sp P54399 PDI_DROME Protein disulfide-isomerase OS		Protoin
2724	97.591	3347.39	0.33	ranscript $1 \ 1 \ 5$	= Drosophila melanogaster OX = 7227 GN = Pdi PE = 2 SV	0.0	Maturation
	,			ransempt_1_1_0	= 1		Wataration
	22011			k49 Locus 4240	sp Q963B6 RL10A_SPOFR 60S ribosomal protein L10a	2.71e-	
2005	5	754.99	0.08	Transcript 9 2 2	OS = Spodoptera frugiperda OX = 7108 GN = RpL10A PE	119	Translation
	10-0-			1	= 2 SV = 1		
2738	10705	367.18	0.04				
	1						
1591	28228	968.24	0.1				
	7						
7055	14951	E10.00	0.05	k49_Locus_5739_	splQ/M4F31CUD2_SCHGR Endocuticle structural	4.13e-	Castingale
7855	0	512.82	0.05	Transcript_4_1_1	glycoprotein SgAbd-2 OS = Schistocerca gregaria $OX =$	21	Cuticule
					7010 F = 1.5 V = 1 an $P14218$ MP20 DPOME Muscle analisis protain 20 OS		
4025	11590	397 55	0.04	k49_Locus_8888_	= Drosophila melanogaster Ω = 7227 CN = Mp20 PE = 2	8.21e-	Cytosqueleton
1020	5	077.00	0.04	Transcript_2_1_6	SV = 2	65	Cy tosqueteton
407	17159		0.00				
496	2	288.26	0.06				
	4026 2899 1247 2573 2724 2005 2738 1591 7855 4025 4025	4026 11662 2899 16931 1247 40416 1247 48771 2573 48771 2724 97591 2005 22011 2738 10705 1591 28228 7 7855 4025 11590 4025 11759 496 17159	402611662 6400.03289916931 645807.54124740416 11386.27257348771 81672.87272497591 93347.39200522011 5754.99273810705 1367.18159128228 7968.24785514951 0512.82402517590 5397.5549617159 2588.56	402611662 6400.030.04289916931 645807.540.58124740416 11386.270.14257348771 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4026 11662 6 400.03 6 11662 7 ranscript_3_1_3 splQOPDA391LFG4_MOUSE Protein lifeguard 4 OS = Mus musculus OX = 10090 GN = Tmbim4 PE = 2 SV = 1 4026 6 400.03 64 5 3plQOPTM41LNPB_DANRE Endoplasmic reticulum junction formation protein lumapark-B OS = Danio rerio OX = 7955 GN = lnpkb PE = 2 SV = 2 2899 16931 64 5807.54 0.58 449_Locus_2351 ranscript_3_1_4 splQOPTM41LNPB_DANRE Endoplasmic reticulum junction formation protein lumapark-B OS = Danio rerio OX = 7955 GN = lnpkb PE = 2 SV = 2 2899 16931 64 5807.54 0.58 449_Locus_281, T ranscript_3_1_4 splQOP3401R126_LITLI 60S ribosomal protein 126 OS = Littorina littorea OX = 31216 GN = RPL26 PE = 2 SV = 1 2897 64 1386.27 0.78 449_Locus_322, T ranscript_9_4_5 splQ029421RF_BLADI Transferrin OS = Blaberus oriein 2 OS = Mus musculus OX = 10090 GN = Pnliprp2 PE = 1 SV = 1 2724 97591 0.754.97 0.73 k49_Locus_322, T ranscript_9_2.2 splP753991PD1_DROME Protein disulfide-isomerase OS Porosphila melanogater OX = 7227 GN = Pdi PE = SV = 1 2011 5 754.99 0.08 k49_Locus_4240 ranscript_9_2.2 splQO7M4F31CUD2_SCHGR Endocutice structural glycoprotein SgAbd-2 OS = Schistocerca gregaria OS = 10100 PE = 1 SV = 1 11590 5 <td>$\begin{array}{c} 4026 \\ 4026 \\ 4026 \\ 6 \\ \end{array} \begin{array}{c} 11662 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$</td>	$ \begin{array}{c} 4026 \\ 4026 \\ 4026 \\ 6 \\ \end{array} \begin{array}{c} 11662 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $

					k55_Locus_113_T	sp Q3T126 CNIH4_BOVIN Protein cornichon homolog 4	1.60e-	
k55_Locus_113_	2158	13219	4524 11	0.45	ranscript_10_1_4	OS = Bos taurus OX = 9913 GN = CNIH4 PE = 2 SV = 1	39	Secretion /
Transcript_10_1	5156	01	4554.11	0.45	k55_Locus_113_T	sp Q68KK0 PA1_SOLIN Phospholipase A1 OS =	1.43e-	Phospholipase
					ranscript_10_1_6	Solenopsis invicta OX = 13686 PE = 1 SV = 1	31	
k55_Locus_1209		10303						
0_Transcript_2_	2579	0	353.39	0.04				
1		0						
k55_Locus_1233		11625			k55_Locus_12339	sp P41822 FRL_AEDAE Ferritin subunit OS = Aedes	1.34e-	
9_Transcript_1_	1043	9	398.77	0.04	_Transcript_1_1_	2000000000000000000000000000000000000	40	Metabolism
1		,			5		-10	
k55_Locus_1250		35689			k55_Locus_1250_	sp Q5G5C4 RS3A_PERAM 40S ribosomal protein S3a	2 43e-	
_Transcript_14_	1123	2	1224.14	0.12	Transcript_14_3_	OS = Periplaneta americana OX = 6978 GN =	139	Translation
3		2			1	Parcxpwex01 PE = 2 SV = 1	107	
k55_Locus_1331	4877	23594	809 3	0.08				
_Transcript_6_1	-1077	8	007.0	0.00				
k55 Locus 1565		68774			k55 Locus 1565	sp Q24238 APH4_DROME Alkaline phosphatase 4 OS =	6 440-	
Transcript 7 1	5153	8	2358.97	0.24	Transcript 7 1 6	Drosophila melanogaster OX = 7227 GN = Alp4 PE = 2 SV	0.44C 76	Metabolism
_maiscript_7_1		0			franscript_7_1_0	= 3	70	
k55_Locus_185_	1096	46259	1586.68	0.16	k55_Locus_185_T	sp P35778 VA3_SOLIN Venom allergen 3 OS =	1.15e-	Venom
Transcript_11_1	1070	0	1500.00	0.10	ranscript_11_1_5	Solenopsis invicta OX = 13686 PE = 1 SV = 2	71	allergen
					k55_Locus_2271_	sp Q9DA39 LFG4_MOUSE Protein lifeguard 4 OS = Mus	4.66e-	
k55_Locus_2271	1733	27320	937 08	0 00	Transcript_5_2_2	musculus OX = 10090 GN = Tmbim4 PE = 2 SV = 1	50	Translation
_Transcript_5_2	1755	2	JJ7.00	0.07	k55_Locus_2271_	sp Q95WA0 RL26_LITLI 60S ribosomal protein L26 OS =	5.49e-	Translation
					Transcript_5_2_5	Littorina littorea OX = 31216 GN = RPL26 PE = 2 SV = 1	68	
k55_Locus_2505		22116			k55_Locus_2505_	cn R2D014 VDPP4 APIME Vonom dipontidul pontidaça	2 460	Pontido
_Transcript_11_	3085	4	758.59	0.08	Transcript_11_2_	4 OS = A min molliform OX = 7460 DE = 1 SV = 1	2.400-	Tepude
2		4			6	4 OS = Apis memiera OX = 7460 FE = 1.5 V = 1	110	Maturation
k55_Locus_2784	2726	18665	640 22	0.06				
_Transcript_7_1	3736	5	640.22	0.06				
k55_Locus_2784	1255	38624	1224 02	0.12				
_Transcript_7_2	1333	7	1324.02	0.13				
k55_Locus_2824	1210	31758	1080.22	0.11	k55_Locus_2824_	sp Q5UAP4 RSSA_BOMMO 40S ribosomal protein SA	1.39e-	Translation
_Transcript_2_1	1210	8	1007.32	0.11	Transcript_2_1_1	OS = Bombyx mori OX = 7091 PE = 2 SV = 1	124	Tansiation

				k55_Locus_38_Tr anscript_120_1_1	sp Q17750 UFL1_CAEEL E3 UFM1-protein ligase 1 homolog OS = Caenorhabditis elegans OX = 6239 GN = ufl-1 PE = 3 SV = 1	0.17	
				k55_Locus_38_Tr anscript_120_1_3	sp Q0JKD0 GLT1_ORYSJ Glutamate synthase 1 [NADH]. chloroplastic OS = Oryza sativa subsp. japonica OX = 39947 GN = Os01g0681900 PE = 2 SV = 1	0.45	-
k55_Locus_38_ 43776 Transcript_120_ 10401 71 15015.37 1. 1		1.5	k55_Locus_38_Tr anscript_120_1_4	sp Q09575 YRD6_CAEEL Uncharacterized protein K02A2.6 OS = Caenorhabditis elegans OX = 6239 GN = K02A2.6 PE = 4 SV = 1	2.61e- 27	RNA Maturation	
				k55_Locus_38_Tr anscript_120_1_6	sp Q09575 YRD6_CAEEL Uncharacterized protein K02A2.6 OS = Caenorhabditis elegans OX = 6239 GN = K02A2.6 PE = 4 SV = 1	2.51e- 18	_
				k55_Locus_38_Tr anscript_120_1_6	sp Q5F3X4 U5S1_CHICK 116 kDa U5 small nuclear ribonucleoprotein component OS = Gallus gallus OX = 9031 GN = EFTUD2 PE = 2 SV = 1	0.0	
1058	30387 0	1042.27	0.1				
1186	33698 2	1155.84	0.12	k55_Locus_44_Tr anscript_1_1_1	sp Q75VN3 TCTP_BOMMO Translationally-controlled tumor protein homolog OS = Bombyx mori OX = 7091 GN = Tctp PE = 2 SV = 1	1.06e- 85	Cytosqueleton
2206	30842 25	10578.86	1.06	k55_Locus_485_T ranscript_9_1_2	sp Q6XZB0 LIPI_HUMAN Lipase member I OS = Homo sapiens OX = 9606 GN = LIPI PE = 1 SV = 3	5.93e- 25	Phospholipase
1849	67902 3	2329.04	0.23				Chemoreceptio n
2781	10160 3	348.5	0.03				
3315	26798 3	919.18	0.09	k55_Locus_552_T ranscript_9_1_4	sp P0CG71 UBIQ1_CAEEL Polyubiquitin-A OS = Caenorhabditis elegans OX = 6239 GN = ubq-1 PE = 3 SV = 1	0.0	Protein Degradation
7511	25160 1	862.99	0.09	k55_Locus_5854_ Transcript_3_1_3	sp Q7M4F3 CUD2_SCHGR Endocuticle structural glycoprotein SgAbd-2 OS = Schistocerca gregaria OX = 7010 PE = 1 SV = 1	4.13e- 21	Cuticule
	10401 1058 1186 2206 1849 2781 3315 7511	10401 43776 71 1058 30387 0 1058 303698 2 1186 33698 2 2206 30842 25 1849 67902 3 1849 30160 3 3315 26798 3 3315 25160 1	1040143776 7115015.37105830387 01042.271058303698 21042.27118633698 210578.86220630842 2510578.86184967902 32329.04184910160 3348.5331526798 3919.18331525160 1862.99	1040143776 7115015.371.5105830387 01042.270.1105833698 21042.270.1118633698 21155.840.12220630842 2510578.861.06184967902 32329.040.23184967902 32329.040.23184910160 3348.50.03331526798 3919.180.09751125160 1862.990.09	1040143776 7115015.371.6k55_Locus_38_Tr anscript_120_1_31040143776 7115015.371.6k55_Locus_38_Tr anscript_120_1_41040151k55_Locus_38_Tr anscript_120_1_6k55_Locus_38_Tr anscript_120_1_6105830387 01042.270.1k55_Locus_38_Tr anscript_120_1_6105830387 21042.270.1k55_Locus_38_Tr anscript_120_1_6105830387 21042.270.1k55_Locus_44_Tr anscript_1_1_1220630842 210578.861.06k55_Locus_485_T ranscript_9_1_2184967902 32329.040.23Lener anscript_9_1_2184967902 3348.50.03Lener ranscript_9_1_4331526798 3919.180.09k55_Locus_5854_ ranscript_9_1_4751125160 1862.990.09k55_Locus_5854_ ranscript_3_1_3	10401 43776 71 15015.37 1 15015.37 1 <td>10401 43776 71 15015.37 71 15016.37 71 15016.37 71 15016.37 71 15016.37 71 15016.37 71 15016.37 71 15016.37 71 15016.37 71 15016.37 71 15</td>	10401 43776 71 15015.37 71 15016.37 71 15016.37 71 15016.37 71 15016.37 71 15016.37 71 15016.37 71 15016.37 71 15016.37 71 15016.37 71 15

k55_Locus_61_ Transcript_6_1	2678	47812 3	1639.96	0.16	k55_Locus_61_Tr anscript_6_1_6	sp P29341 PABP1_MOUSE Polyadenylate-binding protein 1 OS = Mus musculus OX = 10090 GN = Pabpc1 PE = 1 SV = 2	0.0	RNA Maturation
k55_Locus_6635 _Transcript_3_1	785	19174 1	657.67	0.07				
k55_Locus_6656 _Transcript_3_2	845	11357 8	389.57	0.04	k55_Locus_6656_ Transcript_3_2_4	sp P18101 RL40_DROME Ubiquitin-60S ribosomal protein L40 OS = Drosophila melanogaster OX = 7227 GN = RpL40 PE = 1 SV = 2	2.40e- 81	Protein Degradation
k55_Locus_7083 _Transcript_1_1	2980	10235 6	351.08	0.04	k55_Locus_7083_ Transcript_1_1_5	sp Q9VFC2 SP88E_DROME Serine protease inhibitor 88Ea OS = Drosophila melanogaster OX = 7227 GN = Spn88Ea PE = 2 SV = 1	2.55e- 61	Immunity
k55_Locus_7703 _Transcript_1_1	2688	10548 62	3618.17	0.36	k55_Locus_7703_ Transcript_1_1_1	sp A4IHT0 FIGL1_XENTR Fidgetin-like protein 1 OS = Xenopus tropicalis OX = 8364 GN = fignl1 PE = 2 SV = 1	3.88e- 134	DNA Repair
k55_Locus_8_Tr anscript_7_1	4349	15942 157	54681.44	5.47	k55_Locus_8_Tra nscript_7_1_5 k55_Locus_8_Tra nscript_7_1_6	sp Q3ZU95 PA1_VESGE Phospholipase A1 OS = Vespula germanica OX = 30212 PE = 2 SV = 1 sp Q3ZU95 PA1_VESGE Phospholipase A1 OS = Vespula germanica OX = 30212 PE = 2 SV = 1	2.56e- 45 4.18e- 45	Phospholipase
k55_Locus_9803 _Transcript_1_1	4289	10663 2	365.75	0.04	k55_Locus_9803_ Transcript_1_1_6	sp Q9UBV2 SE1L1_HUMAN Protein sel-1 homolog 1 OS = Homo sapiens OX = 9606 GN = SEL1L PE = 1 SV = 3	0.0	Protein Maturation
k55_Locus_996_ Transcript_10_1	3799	41606 6	1427.1	0.14				
k61_Locus_1081 8_Transcript_1_ 1	1302	29816 0	1022.69	0.1				
k61_Locus_1129 6_Transcript_3_ 1	1613	51777 9	1775.98	0.18	k61_Locus_11296 _Transcript_3_1_ 5	sp Q94624 RS6_MANSE 40S ribosomal protein S6 OS = Manduca sexta OX = 7130 GN = RpS6 PE = 2 SV = 1	2.98e- 125	Translation
k61_Locus_175_ Transcript_2_1	2594	35783 8	1227.38	0.12	k61_Locus_175_T ranscript_2_1_2	sp P09180 RL4_DROME 60S ribosomal protein L4 OS = Drosophila melanogaster OX = 7227 GN = RpL4 PE = 1 SV = 2	3.20e- 116	Translation
k61_Locus_1787 _Transcript_1_1	1871	13446 6	461.22	0.05	k61_Locus_1787_ Transcript_1_1_5	sp Q58FK9 KAT3_RAT Kynurenineoxoglutarate transaminase 3 OS = Rattus norvegicus OX = 10116 GN = Kyat3 PE = 2 SV = 1	5.73e- 91	Protein Maturation

k61_Locus_1873 _Transcript_9_2	1132	35973 8	1233.9	0.12	k61_Locus_1873_ Transcript_9_2_6	sp Q5G5C4 RS3A_PERAM 40S ribosomal protein S3a OS = Periplaneta americana OX = 6978 GN = Parcxpwex01 PE = 2 SV = 1	2.43e- 139	Translation
k61_Locus_2007 _Transcript_1_2	904	50234 5	1723.04	0.17	k61_Locus_2007_ Transcript_1_2_6	sp Q8WQI7 RL18A_SPOFR 60S ribosomal protein L18a OS = Spodoptera frugiperda OX = 7108 GN = RpL18A PE = 2 SV = 1	6.38e- 81	Translation
k61_Locus_2081 _Transcript_6_1	3183	11992 3	411.33	0.04	k61_Locus_2081_sp P91887 AMPN_PLUXY Aminopeptidase N OS =2.Transcript_6_1_1Plutella xylostella OX = 51655 GN = APN1 PE = 1 SV = 1		2.01e- 80	Peptide Maturation
k61_Locus_2381 _Transcript_1_1	3338	24358 0	835.48	0.08	k61_Locus_2381_ Transcript_1_1_1	sp P12919 PDGFB_FELCA Platelet-derived growth factor subunit B OS = Felis catus OX = 9685 GN = PDGFB PE = 2 SV = 1	1.57e- 05	Unknown
k61_Locus_250_ Transcript_6_2	2112	20662 0	708.7	0.07	k61_Locus_250_T ranscript_6_2_6	sp P29413 CALR_DROME Calreticulin OS = Drosophila melanogaster OX = 7227 GN = Calr PE = 1 SV = 2	0.0	Protein Maturation
k61_Locus_2935 _Transcript_2_3	2338	33072 2	1134.37	0.11	k61_Locus_2935_ Transcript_2_3_2	sp P06603 TBA1_DROME Tubulin alpha-1 chain OS = Drosophila melanogaster OX = 7227 GN = alphaTub84B PE = 1 SV = 1	0.0	Cytosqueleton
					· · · · · · · · · · · · · · · · · · ·			
k61_Locus_3810 _Transcript_2_1	4984	30465 9	1044.98	0.1	k61_Locus_3810_ Transcript_2_1_6	sp Q2TBQ5 RL7A_BOVIN 60S ribosomal protein L7a OS = Bos taurus OX = 9913 GN = RPL7A PE = 2 SV = 3	7.48e- 121	Translation
k61_Locus_3810 _Transcript_2_1 k61_Locus_40_ Transcript_1_1	4984 953	30465 9 53161 2	1044.98 1823.42	0.1 0.18	k61_Locus_3810_ Transcript_2_1_6	sp Q2TBQ5 RL7A_BOVIN 60S ribosomal protein L7a OS = Bos taurus OX = 9913 GN = RPL7A PE = 2 SV = 3	7.48e- 121	Translation Cytosqueleton
k61_Locus_3810 _Transcript_2_1 k61_Locus_40_ Transcript_1_1 k61_Locus_438_ Transcript_8_1	4984 953 3543	30465 9 53161 2 46369 7	1044.98 1823.42 1590.48	0.1 0.18 0.16	k61_Locus_3810_ Transcript_2_1_6 k61_Locus_438_T ranscript_8_1_1	sp Q2TBQ5 RL7A_BOVIN 60S ribosomal protein L7a OS = Bos taurus OX = 9913 GN = RPL7A PE = 2 SV = 3 sp P0CG71 UBIQ1_CAEEL Polyubiquitin-A OS = Caenorhabditis elegans OX = 6239 GN = ubq-1 PE = 3 SV = 1	7.48e- 121 0.0	Translation Cytosqueleton Protein Degradation
k61_Locus_3810 _Transcript_2_1 k61_Locus_40_ Transcript_1_1 k61_Locus_438_ Transcript_8_1 k61_Locus_4981 _Transcript_2_1	4984 953 3543 1829	30465 9 53161 2 46369 7 18384 0	1044.98 1823.42 1590.48 630.57	0.1 0.18 0.16 0.06	k61_Locus_3810_ Transcript_2_1_6 k61_Locus_438_T ranscript_8_1_1 k61_Locus_4981_ Transcript_2_1_1	sp Q2TBQ5 RL7A_BOVIN 60S ribosomal protein L7a OS = Bos taurus OX = 9913 GN = RPL7A PE = 2 SV = 3 sp P0CG71 UBIQ1_CAEEL Polyubiquitin-A OS = Caenorhabditis elegans OX = 6239 GN = ubq-1 PE = 3 SV = 1 sp P14318 MP20_DROME Muscle-specific protein 20 OS = Drosophila melanogaster OX = 7227 GN = Mp20 PE = 2 SV = 2	7.48e- 121 0.0 8.73e- 89	Translation Cytosqueleton Protein Degradation Cytosqueleton
k61_Locus_3810 _Transcript_2_1 k61_Locus_40_ Transcript_1_1 k61_Locus_438_ Transcript_8_1 k61_Locus_4981 _Transcript_2_1 k61_Locus_500_ Transcript_6_4	4984 953 3543 1829 2349	30465 9 53161 2 46369 7 18384 0 23908 7	1044.98 1823.42 1590.48 630.57 820.07	0.1 0.18 0.16 0.06 0.08	k61_Locus_3810_ Transcript_2_1_6 k61_Locus_438_T ranscript_8_1_1 k61_Locus_4981_ Transcript_2_1_1 k61_Locus_500_T ranscript_6_4_6	sp Q2TBQ5 RL7A_BOVIN 60S ribosomal protein L7a OS = Bos taurus OX = 9913 GN = RPL7A PE = 2 SV = 3 sp P0CG71 UBIQ1_CAEEL Polyubiquitin-A OS = Caenorhabditis elegans OX = 6239 GN = ubq-1 PE = 3 SV = 1 sp P14318 MP20_DROME Muscle-specific protein 20 OS = Drosophila melanogaster OX = 7227 GN = Mp20 PE = 2 SV = 2 sp P35502 ESTF_MYZPE Esterase FE4 OS = Myzus persicae OX = 13164 PE = 1 SV = 1	7.48e- 121 0.0 8.73e- 89 2.35e- 81	Translation Cytosqueleton Protein Degradation Cytosqueleton Unknown
k61_Locus_3810 _Transcript_2_1 k61_Locus_40_ Transcript_1_1 k61_Locus_438_ Transcript_8_1 k61_Locus_4981 _Transcript_2_1 k61_Locus_500_ Transcript_6_4 k61_Locus_582_ Transcript_6_1	4984 953 3543 1829 2349 3659	30465 9 53161 2 46369 7 18384 0 23908 7 18658 8	1044.98 1823.42 1590.48 630.57 820.07 639.99	0.1 0.18 0.16 0.06 0.08	k61_Locus_3810_ Transcript_2_1_6 k61_Locus_438_T ranscript_8_1_1 k61_Locus_4981_ Transcript_2_1_1 k61_Locus_500_T ranscript_6_4_6 k61_Locus_582_T ranscript_6_1_1	sp Q2TBQ5 RL7A_BOVIN 60S ribosomal protein L7a OS = Bos taurus OX = 9913 GN = RPL7A PE = 2 SV = 3 sp P0CG71 UBIQ1_CAEEL Polyubiquitin-A OS = Caenorhabditis elegans OX = 6239 GN = ubq-1 PE = 3 SV = 1 sp P14318 MP20_DROME Muscle-specific protein 20 OS = Drosophila melanogaster OX = 7227 GN = Mp20 PE = 2 SV = 2 sp P35502 ESTF_MYZPE Esterase FE4 OS = Myzus persicae OX = 13164 PE = 1 SV = 1 sp P12261 EF1G_ARTSA Elongation factor 1-gamma OS = Artemia salina OX = 85549 PE = 1 SV = 3	7.48e- 121 0.0 8.73e- 89 2.35e- 81 9.62e- 179	Translation Cytosqueleton Degradation Cytosqueleton Unknown Translation

					k65_Locus_104_T ranscript 8 1 6	sp Q3ZU95 PA1_VESGE Phospholipase A1 OS = Vespula germanica OX = 30212 PE = 2 SV = 1	1.82e- 30	
k65_Locus_1147 _Transcript_2_1	3286	15671 70	5375.38	0.54	k65_Locus_1147_ Transcript_2_1_5	sp P13060 EF2_DROME Elongation factor 2 OS = Drosophila melanogaster OX = 7227 GN = EF2 PE = 1 SV = 4	0.0	Translation
k65_Locus_2088	2021	16647	571	0.06	k65_Locus_2088_ Transcript_11_1_ 2	sp Q9V447 KRH2_DROME Krueppel homolog 2 OS = Drosophila melanogaster OX = 7227 GN = Kr-h2 PE = 1 SV = 1	6.94e- 59	Protein
_11anscript_11_ 1	2921	2	571	0.00	k65_Locus_2088_ Transcript_11_1_ 5	sp Q5R465 RS3_PONAB 40S ribosomal protein S3 OS = Pongo abelii OX = 9601 GN = RPS3 PE = 2 SV = 1	7.22e- 52	Translation
k65_Locus_26_ Transcript_2_1	1745	21805 83	7479.38	0.75		MTSDERRSYLPLLLAVIFVLAIVHTPSVESRASADAEAD AFADALAKAIANADPGILGVIARWIWKLIQILAPTAA VEVATRLGLPQK		Venom peptide
k65_Locus_4162 _Transcript_4_1	1925	20589 9	706.23	0.07				
k65_Locus_5275 _Transcript_1_1	1660	20671 1	709.02	0.07	k65_Locus_5275_ Transcript_1_1_3	sp P08570 RLA1_DROME 60S acidic ribosomal protein P1 OS = Drosophila melanogaster OX = 7227 GN = RpLP1 PE = 1 SV = 2	3.78e- 36	Translation
k65_Locus_596_ Transcript_1_1	742	19565 4	671.09	0.07	k65_Locus_596_T ranscript_1_1_5	sp O76756 RS8_APIME 40S ribosomal protein S8 OS = Apis mellifera OX = 7460 GN = RpS8 PE = 2 SV = 2	2.23e- 136	Translation
k65_Locus_7655 _Transcript_3_1	2345	33391 2	1145.31	0.11	k65_Locus_7655_ Transcript_3_1_4	sp P32100 RL7_DROME 60S ribosomal protein L7 OS = Drosophila melanogaster OX = 7227 GN = RpL7 PE = 1 SV = 2	1.90e- 103	Translation
k65_Locus_83_ Transcript_7_1	4005	11365 2	389.83	0.04				
k65_Locus_8694 _Transcript_4_1	2406	20853 97	7152.89	0.72	k65_Locus_8694_ Transcript_4_1_1 k65_Locus_8694_ Transcript_4_1_1	sp P35778 VA3_SOLIN Venom allergen 3 OS = Solenopsis invicta OX = 13686 PE = 1 SV = 2 sp P35778 VA3_SOLIN Venom allergen 3 OS = Solenopsis invicta OX = 13686 PE = 1 SV = 2	1.17e- 47 9.87e- 51	Venom allergen
k65_Locus_9888 _Transcript_6_2	1228	16826 7	577.15	0.06	k65_Locus_9888_ Transcript_6_2_6	sp Q6EV04 RS3A_BIPLU 40S ribosomal protein S3a OS = Biphyllus lunatus OX = 197003 PE = 2 SV = 1	1.87e- 142	Translation

k69_Locus_1020 2_Transcript_2_ 2	1480	13427 9	460.58	0.05				
k69_Locus_1049 _Transcript_1_1	548	19660 8	674.36	0.07				
k69_Locus_110_ Transcript_5_1	3341	19212 34	6589.81	0.66	k69_Locus_110_T ranscript_5_1_6	sp Q3ZU95 PA1_VESGE Phospholipase A1 OS = Vespula germanica OX = 30212 PE = 2 SV = 1	8.05e- 45	Phospholipase
k69_Locus_1158 0_Transcript_1_ 1	727	19845 2	680.69	0.07	k69_Locus_11580 _Transcript_1_1_ 6	sp Q75VN3 TCTP_BOMMO Translationally-controlled tumor protein homolog OS = Bombyx mori OX = 7091 GN = Tctp PE = 2 SV = 1	1.20e- 45	Cytosqueleton
k69_Locus_1227 2_Transcript_1_ 1	720	24498 3	840.29	0.08	k69_Locus_12272 _Transcript_1_1_ 4	sp O96647 RL10_BOMMA 60S ribosomal protein L10 OS = Bombyx mandarina OX = 7092 GN = RpL10 PE = 2 SV = 1	3.53e- 112	Translation
k69_Locus_1235	2460	29948	10272 36	1 03	k69_Locus_12355 _Transcript_5_1_ 6	sp P35778 VA3_SOLIN Venom allergen 3 OS = Solenopsis invicta OX = 13686 PE = 1 SV = 2	1.17e- 47	Venom
1	2400	67	10272.30	1.05	k69_Locus_12355 _Transcript_5_1_ 6	sp P35778 VA3_SOLIN Venom allergen 3 OS = Solenopsis invicta OX = 13686 PE = 1 SV = 2	1.01e- 71	allergen
k69_Locus_1459 3_Transcript_1_ 1	598	28645 7	982.54	0.1	k69_Locus_14593 _Transcript_1_1_ 1	sp P05389 RLA2_DROME 60S acidic ribosomal protein P2 OS = Drosophila melanogaster OX = 7227 GN = RpLP2 PE = 1 SV = 1	2.91e- 24	Translation
k69_Locus_1496 4_Transcript_1_ 1	1925	13033 5	447.05	0.04	k69_Locus_14964 _Transcript_1_1_ 4	sp P35501 ESTE_MYZPE Esterase E4 OS = Myzus persicae OX = 13164 PE = 1 SV = 1	4.99e- 82	Unknown
k69_Locus_1683 4_Transcript_1_ 1	739	65913 9	2260.84	0.23		U2-PSDTX-Ta1c Genbank Accession Numbers : MN607168		Venom peptide
k69_Locus_2100 _Transcript_4_1	7317	13391 4	459.32	0.05	k69_Locus_2100_ Transcript_4_1_1	sp O95602 RPA1_HUMAN DNA-directed RNA polymerase I subunit RPA1 OS = Homo sapiens OX = 9606 GN = POLR1A PE = 1 SV = 2	0.0	Transcription

k69_Locus_3195 _Transcript_5_1	4866	11987 0	411.15	0.04	k69_Locus_3195_ Transcript_5_1_5	sp Q8IZJ3 CPMD8_HUMAN C3 and PZP-like alpha-2- macroglobulin domain-containing protein 8 OS = Homo sapiens OX = 9606 GN = CPAMD8 PE = 1 SV = 2	1.14e- 06	Protein Maturation
k69_Locus_4946 _Transcript_1_1	2719	24602 6	843.87	0.08				
k69_Locus_547_ Transcript_3_1	2747	23555 899	80796.5	8.08				
k69_Locus_64_ Transcript_10_4	3190	24830 41	8516.81	0.85	k69_Locus_64_Tr anscript_10_4_6	sp Q9XZ43 5NTD_LUTLO Protein 5NUC OS = Lutzomyia longipalpis OX = 7200 GN = 5NUC PE = 1 SV = 1	4.98e- 123	Metabolism
k69_Locus_678_	1211	16581	568 72	0.06	k69_Locus_678_T	sp P07602 SAP_HUMAN Prosaposin OS = Homo	6.11e-	Cellular
Transcript_6_1	4344	2	508.75	0.00	ranscript_6_1_1	sapiens OX = 9606 GN = PSAP PE = 1 SV = 2	38	Signaling
k69_Locus_8284 _Transcript_2_1	2255	70460 5	2416.79	0.24				
k69_Locus_87_ Transcript_11_1	1120	84555 5	2900.25	0.29	k69_Locus_87_Tr anscript_11_1_2	sp Q9BMK4 PA2_APICC Phospholipase A2 OS = Apis cerana cerana OX = 94128 PE = 2 SV = 1	9.55e- 26	Phospholipase
k69_Locus_9580	2492	62088	2120 (2	0.01	k69_Locus_9580_ Transcript_1_1_1	sp B0FWD3 NU5M_AEDAE NADH-ubiquinone oxidoreductase chain 5 OS = Aedes aegypti OX = 7159 GN = mt:ND5 PE = 3 SV = 1	1.83e- 60	
_Transcript_1_1	3482	4	2129.63	0.21	k69_Locus_9580_ Transcript_1_1_3	sp Q1HR20 NU4M_AEDAE NADH-ubiquinone oxidoreductase chain 4 OS = Aedes aegypti OX = 7159 GN = mt:ND4 PE = 2 SV = 1	3.57e- 19	wetabolism

Supporting Information for Publication

Title of Paper

Characterization of the venom peptide repertoire of the red ant *Manica rubida* (Myrmicinae) and identification of insecticidal toxins

Authors

Axel Touchard^{†,*}, Samira R. Aili[‡], Nathan Téné[†], Valentine Barassé[†], Christophe Klopp[§], Alain Dejean^{∥,⊥}, R. Manjunatha Kini^{*},^{**}, Mrinalini^{*} Laurent Coquet[⊽], Thierry Jouenne[⊽], Benjamin Lefranc[•], Jérôme Leprince[•], Pierre Escoubas[⊗], Graham M. Nicholson[‡], Michel Treilhou^{†,#}, Elsa Bonnafé^{†,#}

Affiliations

[†] Equipe BTSB-EA 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81012, Albi, France

[‡]Neurotoxin Research Group, School of Life Sciences, University of Technology Sydney, Ultimo NSW 2007, Australia

[§] Unité de Mathématique et Informatique Appliquées de Toulouse, UR0875, INRA Toulouse, Castanet-Tolosan, France

^{II} CNRS, UMR Ecologie des forêts de Guyane (EcoFoG), Campus Agronomique, BP 316, 97379 Kourou Cedex, France

[⊥] CNRS, UMR 5245, Laboratoire Écologie Fonctionnelle et Environnement, 118 route de Narbonne, 31062 Toulouse, France

* Protein Science Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore

* Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore,

Singapore 117600, Singapore

^v CNRS UMR 6270, Normandie University, UNIROUEN, PISSARO,76130 Mont-Saint-Aignan, France

• Inserm U 1239, Normandie University, UNIROUEN, Plate-forme de Recherche en Imagerie Cellulaire, Normandie (PRIMACEN), 76000 Rouen, France

⊗ VenomeTech, 473 Route des Dolines — Villa 3, Valbonne 06560, France

Corresponding Authors

Dr. Axel Touchard, Equipe BTSB-EA 7417, Université de Toulouse, Institut National Universitaire Jean-François Champollion, Place de Verdun, 81012, Albi, France. Phone : +(33)5 63 48 64 32. Email: axel.touchard2@gmail.com

Table of Contents

Supplementary Table S1	Concentration of each synthetic myrmicitoxin used for insecticidal assays	Page S3
Supplementary Table S2	Peptide mass fingerprint of Manica rubida venom	Page S4
Supplementary Table S3	The list of sequence tags yielded from Peaks software interpretation of MS/MS spectra.	Page S5
Supplementary Figure S1	Integrative methodology used for the sequencing of U ₁₇ -MYRTX-Mri1b.	Page S13
Supplementary Table S4	Identified peptide toxin transcripts expressed in the venom transcriptome of <i>Manica rubida</i> .	Page S14
Supplementary Table S5	Insecticidal activity of Manica rubida venom fractions	Page S15
Supplementary Figure S2	<i>De novo</i> structure prediction of insecticidal myrmicitoxins of <i>M. rubida</i> venom	Page S16

Table S1. Concentration (mmol.L⁻¹) of each synthetic myrmicitoxin used for insecticidal assays. Each fly received 1 μ L of peptide-PBS solution.

U ₃ -MYRTX-	U ₁₀ -MYRTX-	U ₁₀ -MYRTX-	U ₁₀ -MYRTX-	U ₁₂ -MYRTX-	U ₁₃ -MYRTX-	U ₂₀ -MYRTX-
Mrila	Mrila	Mri1b	Mrilc	Mri1a	Mri1a	Mri1a
1.024	2.350	2.703	2.238	3.817	2.813	2.813
0.512	1.175	1.351	0.448	0.763	1.407	2.250
0.256	0.825	0.832	0.203		0.566	1.918
0.102	0.650	0.277	0.112		0.113	0.384
0.026	0.275	0.062	0.058		0.057	0.192
0.010	0.130	0.006	0.020		0.028	0.096
	0.065		0.010		0.014	0.019
	0.032		0.004		0.006	
	0.016					
	0.006					

Table S2. Peptide mass fingerprint of *M. rubida* **venom.** List of peptide masses detected by LC-MS using an LCQ Advantage mass spectrometer. Bold text denotes full-length mature peptides. Masses corresponding to fragments were identified by Peaks software interpretation of MS/MS spectra. "*" Indicates isolated peptides submitted to Edman degradation. Note that U₁₇-MYRTX-Mri1c was not detected by LCQ Advantage mass spectrometer and was not included in this table.

Retention	Mass (Da)	Relative	Temporary name	Pentide identified in the venom
time (min)	Mass (Da)	abundance (%)	remporary name	reptide identified in the venom
1.76	1092.71	0.053	Mr-1093	U ₁₂ -MYRTX-Mri1b
15.40	928.38	0.001	Mr-928	
18.16	6227.45	0.034	Mr-6227	U ₁₈ -MYRTX-Mri1a*
18.23	6425.95	0.006	Mr-6426	
18.62	6081.50	0.016	Mr-6082	nonglycosylated (U18-MYRTX-Mri1a)
19.16	1314.50	0.018	Mr-1315	U19-MYRTX -Mri1a
19.81	1434.91	0.348	Mr-1435	U6-MYRTX -Mri1a*
19.86	1321.70	0.004	Mr-1322	Fragment (U6-MYRTX-Mri1a)
19.86	1208.72	0.007	Mr-1209	
20.60	2745.96	0.007	Mr-2746	U ₁₇ -MYRTX -Mri1b*
20.64	1506.48	0.002	Mr-1506	Fragment (U10-MYRTX-Mrilc)
21.21	2567.76	0.009	Mr-2568	U ₁₇ -MYRTX -Mri1a
22.73	4664.04	0.005	Mr-4664	
23.35	1379.70	0.099	Mr-1380	Fragment (U10-MYRTX-Mri1a)
23.95	1110.80	1.975	Mr-1111	U12-MYRTX-Mri1a*
24.26	1384.36	0.108	Mr-1384	Fragment (U ₃ -MYRTX-Mri1a)
24.90	1038.50	0.472	Mr-1039	Fragment (U ₃ -MYRTX-Mri1a)
24.90	1497.50	0.909	Mr-1498	Fragment (U ₃ -MYRTX-Mri1a)
27.32	1352.90	0.583	Mr-1353	Fragment (U ₁₀ -MYRTX-Mri1c)
27.37	2704.92	1.760	Mr-2705	Fragment (U13-MYRTX-Mri1a)
29.37	1468.20	0.047	Mr-1468	
29.55	1390.86	1.514	Mr-1391	
31.53	2741.24	13.918	Mr-2741	U20-MYRTX-Mri1a*
32.49	2852.32	24.303	Mr-2852	U10-MYRTX-Mri1a
32.97	2979.48	1.906	Mr-2979	U13-MYRTX-Mri1a
34.55	2989.02	7.784	Mr-2989	U ₁₀ -MYRTX-Mri1b
35.06	808.51	1.032	Mr-809	Fragment (U ₃ -MYRTX-Mri1a)
36.75	2730.50	0.475	Mr-2731	Fragment (U10-MYRTX-Mrilc)
37.14	2413.14	0.178	Mr-2413	
37.68	2842.56	35.613	Mr-2843	U10-MYRTX-Mri1c
43.75	2175.22	5.921	Mr-2175	U3-MYRTX-Mri1a
44.82	2957.88	0.549	Mr-2958	
48.79	2287.98	0.343	Mr-2288	

Table S3. Sequence tags yielded from Peaks software interpretation of MS/MS spectra. The match with identified toxins was performed manually by comparison of each sequence tags with amino acid sequences of myrmicitoxins.

Scan	TLC	ALC (%)	m/z	z	RT	Mass	ppm	PTM	Тад	Toxin match
11207	10.8	98	589.8334	2	46.04	1177.6528	-0.4	N	LDKAAAAFMKL	U ₁₃ -Mri1a
21770	13.7	98	713.9429	2	68.25	1425.8706	0.4	Ν	VGGSLLAKAALKLW	U ₁₀ -Mri1c
11437	15.7	98	581.0359	3	46.55	1740.0872	-0.6	Ν	ASKAEELLKKLLAKKA	U ₂₀ -Mri1a
19756	16.6	98	610.0187	3	63	1827.0327	0.9	N	GFKSMLAKAALKLLSYS	U ₁₀ -Mri1a
24468	20.5	98	700.4302	3	73.62	2098.2698	-0.4	N	GFKSMLAKAALKLLAKVAPAA	U ₁₀ -Mri1a
8672	9.8	98	443.7717	2	40.2	885.5283	0.6	N	GVGSLLAKAA	U ₁₀ -Mri1c
15347	10.8	98	500.3138	2	54.73	998.6124	0.6	N	VGGSLLAKAAL	U ₁₀ -Mri1c
21727	11.6	97	573.8475	2	68.19	1145.6809	-0.4	N	VGGSLLAKAALF	U ₁₀ -Mri1c
13522	12.6	97	645.8925	2	51.33	1289.7708	-0.2	Ν	VGGSLLAKAALKY	U ₁₀ -Mri1c
21818	13.6	97	686.4231	2	68.32	1370.8318	-0.1	Ν	VGGSLLAKAALKML	U ₁₀ -Mri1c
31689	13.5	97	698.4496	2	87.69	1394.886	-0.9	Ν	PTGSLLAKAALKLL	U ₁₀ -Mri1c
42191	13.6	97	732.4453	2	107	1462.8872	-7.6	N	EHGSLLAKAALKLL	U ₁₀ -Mri1c
35845	13.5	97	744.9749	2	95.24	1487.9438	-5.8	N	KYGSLLAKAALKLL	U ₁₀ -Mri1c
17777	13.6	97	762.9513	2	58.84	1523.8896	-1	N	GFKSMLAKAALKLF	U ₁₀ -Mri1a
7253	9.6	96	549.7823	2	36.23	1097.5505	-0.4	N	PFLQHALTDG	U₃-Mri1a
17557	9.6	96	555.8234	2	58.48	1109.6331	-0.7	N	PLDPKVLESL	U ₁₂ -Mri1a
12051	11.6	96	626.8611	2	48.38	1251.7075	0.1	N	VVTGDPLDPKVL	U ₁₂ -Mri1a
31493	13.5	96	691,4429	2	87.33	1380.8704	0.6	N	SPGSLLAKAALKLL	U ₁₀ -Mri1c
16250	14.4	96	718,927	2	56.29	1435,8398	-0.3	N	I VAPAAAFVI ANKI G	U ₁₀ -Mri1c
19754	12.5	96	722 3672	2	63	1442 7227	-1.9	N	MTLPELOHALTDG	U ₂ -Mri1a
26438	15.3	96	522 6581	3	77.08	1564 9551	-1.6	N	DPGVGSLLAKAALKU	U ₁₀ -Mri1c
20450	17.2	96	660 7043	3	78.82	1979 0913	1.0	N		
27207	17.2	96	990 5566	2	78.82	1979.0913	3.8	N	KLGLEDQLDKAAAAEMKI	U ₁₃ -Mri1a
27301	21.4	90	717 7027	2	04.00	2150 2552	0.4	N		
10720	10.2	90	717.7927		94.00 62.00	2130.3552	0.4	IN N		
19739	19.5	90	742 7672	4	70.06	2209.2470	0.1	IN N		
27900	19.5	90	743.7072	2	79.90	2220.2012	-0.7	IN N		
30131	22.2	90	043.3917	4	04.00 20.52	2509.5239	5.5	IN N		
0424	1.1	90	406.7527	2	39.52	052 5220	0.0	IN N		
9343	0.0 10 F	90	477.2084	2	41.82	952.5229	-0.0	IN N		
19737	10.5	95	521.3376	2	62.97	1040.6594	1.5	IN N		
10238	0.0	95	524.2906	2	30.20	1046.5647	2	IN N		
9496	11.4	95	564.3604	2	42.49	1126.7073	-1	IN N	VGGSLLAKAALK	
19258	11.4	95	605.3636	2	62.21	1208.7241	-9.4	IN N	HIGSLLAKAALK	
14074	12.3	95	4/1.960/	3	52.39	1412.8601	0.1	IN N	ASKAEELLKKLLA	
19425	12.4	95	721.879	2	62.48	1441.7388	3.2	IN N		U ₃ -IVIFIIa
20671	14.3	95	804.4436	2	65.74	1606.8718	0.5	IN N		U ₁₃ -IVIFI1a
26221	14.3	95	561.3049	3	76.7	1680.8909	1.3	N		U ₁₃ -Mri1a
19760	16.2	95	914.5253	2	63.01	1827.0327	1.8	N	KEGSMLAKAALKLLSYS	U ₁₀ -Mri1a
35996	20.9	95	805.1377	3	95.58	2412.4023	-4.5	N	LGMESLKQLSAKAEELLKKLLA	U ₂₀ -Mri1a
6995	8.6	95	475.7782	2	35.61	949.5419	0	N	KAAAAFMKL	U ₁₃ -Mri1a
17759	9.5	95	4/8.8106	2	58.82	955.6066	0.1	N	GVGSLLKLVA	
1/40/	9.5	95	481.787	2	58.2	961.5596	-0.1	N	VGGSLLAKAF	U ₁₀ -Mri1c
4206	9.4	94	519.2667	2	24.17	1036.5188	0.1	N	ALVHAPETEA	11 14 14
1/109	10.3	94	587.8817	2	57.69	11/3./485	0.3	N	SLLAKAALKLF	
16388	10.3	94	619.8607	2	56.53	1237.707	-0.1	N	GLKDALFLSFK	U ₁₀ -Mri1b
21728	9.4	94	630.8195	2	68.19	1259.626	-1.2	N	LFSKPLYDMF	
14672	11.3	94	656.3552	2	53.53	1310.6982	-1.8	N	LTPFLQHALTNG	U ₃ -Mri1a
11457	12.3	94	689.4175	2	46.58	1376.8213	-0.6	N	GFKSMLAKAALKL	U ₁₀ -Mri1a
31534	13.1	94	698.9478	2	87.41	1395.8813	-0.2	N	QAGSLLAKAALKLL	U ₁₀ -Mri1c
17782	13.1	94	491.6569	3	58.85	1471.949	-0.1	N	GFKSLLAKAALKLL	U ₁₀ -Mri1c
17775	13.2	94	381.9795	4	58.84	1523.8896	-0.4	N	GFKSMLAKAALKLF	U ₁₀ -Mri1a
35671	19.8	94	694.1133	3	94.91	2079.3181	0	N	VGGSLLAKAALKLLKLVAPAF	U ₁₀ -Mri1c
27134	26.2	94	913.8862	3	78.57	2738.6243	4.6	N	GFKSMLAKAALKLLKAVAPAAAAALADK	U ₁₀ -Mri1a
17133	8.5	94	470.8315	2	57.99	939.648	0.5	Ν	LAKAALKLL	U ₁₀ -Mri1a/U ₁₀ -Mri1c
7067	8.4	93	521.2721	2	35.36	1040.5291	0.6	Ν	PFLQHALTD	U₃-Mri1a
15763	9.3	93	524.8113	2	55.47	1047.6077	0.3	N	LGPLLHALTN	U₃-Mri1a
15899	10.2	93	570.8896	2	55.93	1139.7642	0.5	Ν	LSLAKAALKLL	U ₁₀ -Mri1c
21888	10.2	93	570.8868	2	68.44	1139.7642	-4.4	Ν	SLLAKAALKLL	U ₁₀ -Mri1c
17180	11.2	93	453.9438	3	57.79	1358.8108	-0.9	Ν	KLLAAKALMSKW	U ₁₀ -Mri1a
35601	13	93	699.4414	2	94.79	1396.8652	2.2	Ν	AEGSLLAAKALKLL	U ₁₀ -Mri1c
32569	13.1	93	718.4496	2	89.2	1434.8921	-5.1	Ν	HTGSLLAKAALKLL	U ₁₀ -Mri1c
25374	13	93	481.9819	3	75.78	1442.9224	1	Ν	FVGSLLAKAALKLL	U ₁₀ -Mri1c

25734	13.9	93	530.9814	3	75.85	1589.9214	0.6	Ν	GFVESMLAKAALKLL	U ₁₀ -Mri1a
20644	14	93	536.6313	3	65.66	1606.8718	0.1	Ν	KLGLFDQLDKAAAAF	U ₁₃ -Mri1a
7953	15.9	93	581.3284	3	38.16	1740.9622	0.6	Ν	KAEVPTVAAALENKVTT	U ₁₀ -Mri1b
35630	15.8	93	584.3549	3	94.84	1750.0393	2	Ν	GVGSLLAKAALKLLSYF	U ₁₀ -Mri1c
41529	16.7	93	604.7178	3	106	1811.1318	-0.1	Ν	VGGSLLAKAALKLLLMTL	U ₁₀ -Mri1c
27077	18.7	93	946.5823	2	78.46	1891.1506	-0.3	N	VGVADPGVGSLLAKAALKLL	U ₁₀ -Mri1c
24245	16.7	93	660,7042	3	73.25	1979.0913	-0.2	N	KLLGEDOLDKAAAAFMLK	U ₁₃ -Mri1a
22410	21.4	93	616.0914	4	69.78	2460.3562	-8	N		U ₁₃ -Mri1a
16750	10.1	92	542 8583	2	57 14	1083 7014	0.6	N	GSILAAKALKI	U ₁₀ -Mri1c
26973	83	92	542.0000	2	78.22	1086 575	0.0	N	KDALELSEE	Uto-Mri1b
20373	10.5	92	570 887	2	69 12	1139 7642	-4.1	N		
14070	10.1	02	570.887	2	E2 4	1157.7042	26	N		
14079	10.1	92	579.800	2	32.4	1137.7203	-2.0	IN N		
20055	10.1	92	390.8550	2	45.47	1179.0499	2.4	IN N		
26550	10.1	92	394.9545	3	11.3	1181.8223	16.5	IN N	GLLKKLLAKKA	
11472	12	92	052.8040	2	46.6	1303.717	-1.9	IN N	GLIVIESLKAGLSAK	
18100	12	92	/11.3//4	2	59.84	1420.7383	1.5	N	QDLDKAAAAFMKL	U ₁₃ -Mri1a
34349	13.8	92	740.4611	2	92.69	1478.9185	-7.3	N	QPGGSLLAKAALKLL	U ₁₀ -Mri1c
13615	12.8	92	753.9579	2	51.53	1505.9004	0.6	Y	KFGSM(+15.99)LAKAALKLL	U ₁₀ -Mri1a
25608	12.9	92	806.4514	2	75.62	1610.8855	1.7	N	LLMTLPFLQHALTN	U₃-Mri1a
13826	13.7	92	540.3403	3	53.4	1618.0002	-0.7	Ν	GFKSMLAKAALKLLK	U ₁₀ -Mri1a
21813	16.6	92	465.792	4	68.32	1859.1431	-2.3	Ν	GFKSMLAKAALKLLAKVA	U ₁₀ -Mri1a
27034	18.4	92	631.3918	3	78.36	1891.1506	1.6	Ν	VGVADPGVGSLLAKAALKLL	U ₁₀ -Mri1c
28156	16.5	92	661.4224	3	80.46	1981.2273	9.1	Ν	KGVPKLLKLAAKALMSKW	U ₁₀ -Mri1a
19757	18.3	92	737.4241	3	63	2209.2478	1.2	Ν	GFKSMLAKAALKLVSMRPVY	U ₁₀ -Mri1a
35369	19.3	92	781.4626	3	94.41	2341.3652	0.3	Ν	GLMESLKQLSAKAEELLKKLL	U ₂₀ -Mri1a
32899	21.1	92	636.1313	4	89.72	2540.4973	-0.4	N	AVMESLKQLSAKAEELLKKLLAK	U ₂₀ -Mri1a
17766	22	92	648,6066	4	58.83	2590.394	1.2	N	DKPGOAKKLGLEDOLDKAAAAEMK	U ₁₃ -Mri1a
28565	22.2	92	537.5212	5	81.61	2682,6079	-14	N		U ₂₀ -Mri1a
21922	83	92	470 831	2	68 54	939 648	-0.6	N		U ₁₀ -Mri1a/U ₁₀ -Mri1c
19768	Q 1	01	547 8252	2	63.02	1093 6382	-2.1	N		
16/62	10.9	Q1	588 8186	2	56.65	1175 6221	0.5	N		Ulas-Mri1a
0402	11.0	01	621 2402	2	20 50	1240 6662	0.5	N		U. Mri1b
21070	11.9	91	645 2405	2	59.59	1240.0003	-0.1	IN NI		
21979	12.0	91	045.5465	2	00.71	1200.0040	-1.0	IN N		U13-IVITIA
21855	12.8	91	445.9628	3	08.37	1334.805	1.5	IN N		
21/41	11.8	91	476.2975	3	58.21	1425.8818	-7.7	IN N	GVILAKAALKLRW	
25307	14.6	91	513.3398	3	/5.0/	1536.9966	0.6	N		
21025	13.7	91	559.6636	3	66.6	1675.9846	-9.4	N	WGFKSIVILAKAALKLL	U ₁₀ -IVIrI1a
29010	13.6	91	848.942	2	82.37	1695.8655	2.3	N	QDLDKAAAAFMKLFQ	U ₁₃ -Mri1a
16387	14.6	91	588.3126	3	56.53	1761.9182	-1.2	Y	GLM(+15.99)ESLKQLSAKAEEL	U ₂₀ -Mri1a
27955	16.3	91	589.058	3	80.04	1764.1599	-4.2	Ν	GVTLAKAALKLLKLVGGL	U ₁₀ -Mri1c
25596	15.5	91	620.6874	3	75.59	1859.0437	-1.7	N	LGMESLKELSAKAEKLL	U ₂₀ -Mri1a
24401	16.3	91	663.3845	3	73.51	1987.1023	14.7	Ν	LGMESLKQLSAKAEELLK	U ₂₀ -Mri1a
27922	18.2	91	1115.147	2	79.99	2228.2812	-0.9	N	LGMESLKQLSAKAEELLKKL	U ₂₀ -Mri1a
6177	6.4	91	407.2394	2	32.78	812.4644	0	Ν	LDPKVLE	U ₁₂ -Mri1a
12054	8.2	91	426.2516	2	48.38	850.4912	-2.9	Ν	ΤVΑΑΡΑΚΡΡ	
19116	8.1	90	513.7756	2	61.98	1025.5369	-0.1	Ν	AAAFMKLFQ	U ₁₃ -Mri1a
9738	9.9	90	376.5765	3	42.98	1126.7185	-9.5	Ν	RGSLLAKAALK	U ₁₀ -Mri1c
39049	10.8	90	626.3638	2	101.7	1250.7122	0.8	Ν	ESEPGLPLLALL	U₃-Mri1a
13518	12.6	90	689.41	2	51.33	1376.8027	1.9	Ν	KLVAPAAAEVLAPQ	U ₁₀ -Mri1c
11451	11.7	90	459.9478	3	46.57	1376.8213	0.1	Ν	FGKSMLAKAALKL	U ₁₀ -Mri1a
17821	10.8	90	706.4575	2	58.93	1410.8962	3	Ν	KLDALAKLWKLL	U ₁₀ -Mri1b
13867	11.7	90	478.6354	3	52.01	1432.884	0.2	Ν	FKSMLAKAALKLL	U ₁₀ -Mri1a
30824	13.6	90	727.4547	2	86.17	1452.8916	2.3	N	VGGSLLAEVAALKI	U ₁₀ -Mri1c
27317	13.5	90	733,9883	2	78.92	1465,9595	1.7	N	VGGSLLAKAAIKIII	U ₁₀ -Mri1c
38111	12.6	90	741 4498	2	100	1480 8799	35	Y	ΗΜ(+15 99)GSI Ι ΔΚΔΔΙ ΚΙ Ι	U10-Mri1c
26/3/	14 /	90	783 /821	2	77 09	1564 9551	-3 /	N		
27000	1/ /	<u>an</u>	528 0007	2	78 5	1580 0066	_/	N		
27050	16.2	00	105 7001	∧	70.5	1070 0010	-4	N		
2/300	10.2	90	493.78UI	4	10.9	7420 2025	1 2	IN V		
32340	19.8	90	008.1074	4	00.03	2428.3975	1.3	Υ Ν'		
41912	25.1	90	978.2902	3	106.5	2931.8364	4.2	N N		
6476	6.3	90	389.2122	2	33.38	//6.4102	-0.5	N	AVMESLK	U ₂₀ -Mri1a
15920	6.3	90	393.2433	2	55.71	/84.4694	3.3	N	PKVLESL	U ₁₂ -Mri1a
25470	8.1	90	428.2558	2	75.34	854.4974	-0.4	N	RLSALAGAP	
19765	8.1	90	448.3026	2	63.01	894.5902	0.6	Ν	KAGLLPLAL	U₃-Mri1a
		90	486 3156	2	42.27	970.6175	-0.8	N	SGLLAKAALK	U ₁₀ -Mri1c
9507	9	50	100.5150							
9507 19706	9 8.9	89	530.2718	2	62.93	1058.5283	0.7	Ν	VVTGDPLDPF	U ₁₂ -Mri1a
9507 19706 18101	9 8.9 10.7	89 89	530.2718 614.3685	2	62.93 59.84	1058.5283 1226.7346	0.7 -9.8	N N	VVTGDPLDPF QQGSLLAKAALK	U ₁₂ -Mri1a U ₁₀ -Mri1c

21327	9.8	89	627.3538	2	67.32	1252.6816	9.1	Ν	PFLQHALTLDV	U ₃ -Mri1a
25824	11.6	89	661.9423	2	76.02	1321.8696	0.4	Ν	VPSVLAKAALKLL	U ₁₀ -Mri1a
11473	11.5	89	460.2824	3	46.6	1377.8167	6.4	Ν	GFKSMKGKAALKL	U ₁₀ -Mri1a
22758	12.5	89	694.437	2	71.47	1386.8599	-0.3	Ν	VGGSLLAAKALKLF	U ₁₀ -Mri1c
6570	12.5	89	720.9065	2	33.91	1439.7983	0.1	Ν	KAEVPVTAAALENK	U ₁₀ -Mri1b
34790	12.4	89	754.4584	2	94.23	1506.9172	-10	Ν	FYGSLLAKAALKLL	U ₁₀ -Mri1c
35112	13.3	89	754.9612	2	93.97	1507.9084	-0.3	Ν	SHSGSLLAKAALKLL	U ₁₀ -Mri1c
15162	14.2	89	545.2874	3	54.44	1632.8391	0.7	Ν	GLMESLKAGLSAKAEE	U ₂₀ -Mri1a
21796	15.2	89	467.51	4	68.29	1866.0073	1.9	Ν	KLGLFDQLDKAAAAFMK	U ₁₃ -Mri1a
19665	16	89	393.8476	5	62.87	1964.2034	-0.8	Ν	PVDAKAEELLKKLLAKKA	U ₂₀ -Mri1a
32415	18.7	89	692.3763	3	88.95	2074.1057	0.6	Ν	TAEALAKALAEAFAEALGTRA	CL24Contig3/4 1
19759	17.8	89	442.8572	5	63	2209.2478	0.8	Ν	GFKSMLAKAALKLVSMRPVY	U ₁₀ -Mri1a
28854	18.7	89	462.8903	5	82.01	2309.4158	-0.2	Ν	ATRQLSAKAEELLKKLLAKKA	U ₂₀ -Mri1a
27815	23.1	89	812.1389	3	79.83	2433.384	4.4	Ν	VGEADAVGVADPGVGSLLAKAALKLL	U10-Mri1c
29171	20.5	89	514.921	5	82.76	2569.5569	4.6	Ν	PYSLKQLSAKAEELLKKLLAKKA	U ₂₀ -Mri1a
25113	21.3	89	671.6597	4	74.73	2682.6079	0.7	Ν	LMESLKQLSAKAEELLKKLLAKKA	U ₂₀ -Mri1a
41783	25	89	708.1867	4	106.3	2828.7214	-1.3	Ν	QQGSLLAKAALKLLKLVAPAAAEVLANK	U ₁₀ -Mri1c
27817	26.6	89	975.918	3	79.84	2924.7246	2.6	Y	KFGSM(+15.99)LAKAALKLLKAVAAPAAAALADKLG	U ₁₀ -Mri1a
7322	6.2	89	377.2017	2	36.45	752.3891	-0.3	Ν	GFKSMLA	U ₁₀ -Mri1a
7977	7.1	88	506.7653	2	38.23	1011.5137	2.3	Ν	PDEVFLHR	
14691	9.7	88	553.2972	2	53.58	1104.585	-4.6	Ν	LGMESLKAGLS	U ₂₀ -Mri1a
10385	9.7	88	568.8279	2	44.74	1135.6423	-0.9	Ν	GFKSMLAKAAL	U10-Mri1a
27598	8.8	88	583.8447	2	79.44	1165.6746	0.2	Ν	LKDALFLSFL	
22786	10.6	88	616.392	2	70.57	1230.77	-0.4	Ν	GSLLAKAALKLF	U ₁₀ -Mri1c
19007	10.6	88	641.8495	2	61.78	1281.6816	2.2	Ν	DGPLDPKVLESL	U ₁₂ -Mri1a
15574	10.5	88	433.2632	3	55.11	1296.7651	2	Ν	LDPKVLESLVGK	U ₁₂ -Mri1a
18114	11.5	88	474.5867	3	59.87	1420.7383	0.1	Ν	NELDKAAAAFMKL	U ₁₃ -Mri1a
27924	13.2	88	734.9584	2	79.99	1467.9023	-0.1	Ν	DGVGSLLAAKALKLL	U ₁₀ -Mri1c
17762	12.3	88	508.9695	3	59.42	1523.8896	-2	Ν	GFKSMLAKAALKLF	U ₁₀ -Mri1a
30501	12.3	88	820.4502	2	85.81	1638.8979	-7.4	Ν	KDLQDFLGLKKAYT	
19647	15.9	88	492.0578	4	62.84	1964.2034	-0.7	Ν	PVDAKAEELLKKLLAKKA	U ₂₀ -Mri1a
30520	17.5	88	675.6989	3	85.56	2024.1055	-15	Ν	PQGAKKDKLGLFDQLAAPGA	U ₁₃ -Mri1a
11456	17.5	88	528.3357	4	46.58	2109.3247	-5.2	Ν	KAGLSAKAEELLKKLLAKKA	U ₂₀ -Mri1a
32078	20.2	88	551.8492	4	88.64	2203.3667	0.6	Ν	VGGSLLAKAALKLLKAVLAPAAE	U ₁₀ -Mri1c
28675	19.4	88	488.7066	5	81.6	2438.4834	5.5	Ν	ESLKQLSAKAEELLKKLLAKKA	U ₂₀ -Mri1a
32888	20.2	88	509.1073	5	89.7	2540.4973	1.1	Ν	LGMESLKQLSAKAEELLKKLLAK	U ₂₀ -Mri1a
20720										
28728	20.1	88	515.1099	5	81.73	2570.5193	-2.5	Y	NM(+15.99)TVKQLSAKAEELLKKLLAKKA	U ₂₀ -Mri1a
28728 30848	20.1 22	88 88	515.1099 457.6122	5 6	81.73 86.71	2570.5193 2739.6294	-2.5 0.1	Y N	NM(+15.99)TVKQLSAKAEELLKKLLAKKA LGMESLKQLSAKAEELLKKLLAKKA	U ₂₀ -Mri1a U ₂₀ -Mri1a
28728 30848 14112	20.1 22 6.1	88 88 88	515.1099 457.6122 415.2178	5 6 2	81.73 86.71 52.47	2570.5193 2739.6294 828.4203	-2.5 0.1 0.8	Y N N	NM(+15.99)TVKQLSAKAEELLKKLLAKKA LGMESLKQLSAKAEELLKKLLAKKA GFKSMLF	U ₂₀ -Mri1a U ₂₀ -Mri1a U ₁₀ -Mri1a
28728 30848 14112 18050	20.1 22 6.1 6.1	88 88 88 88	515.1099 457.6122 415.2178 440.2518	5 6 2 2	81.73 86.71 52.47 59.68	2570.5193 2739.6294 828.4203 878.4902	-2.5 0.1 0.8 -1.2	Y N N N	NM(+15.99)TVKQLSAKAEELLKKLLAKKA LGMESLKQLSAKAEELLKKLLAKKA GFKSMLF VEPKFLF	U ₂₀ -Mri1a U ₂₀ -Mri1a U ₁₀ -Mri1a
28728 30848 14112 18050 21865	20.1 22 6.1 6.1 7.9	88 88 88 88 88	515.1099 457.6122 415.2178 440.2518 477.76	5 6 2 2 2	81.73 86.71 52.47 59.68 68.39	2570.5193 2739.6294 828.4203 878.4902 953.5069	-2.5 0.1 0.8 -1.2 -1.4	Y N N N	NM(+15.99)TVKQLSAKAEELLKKLLAKKA LGMESLKQLSAKAEELLKKLLAKKA GFKSMLF VEPKFLF ESEPGLPLL	U ₂₀ -Mri1a U ₂₀ -Mri1a U ₁₀ -Mri1a U ₃ -Mri1a
28728 30848 14112 18050 21865 37223	20.1 22 6.1 6.1 7.9 8.8	88 88 88 88 88 88 88	515.1099 457.6122 415.2178 440.2518 477.76 491.3212	5 2 2 2 2	81.73 86.71 52.47 59.68 68.39 98.36	2570.5193 2739.6294 828.4203 878.4902 953.5069 980.627	-2.5 0.1 0.8 -1.2 -1.4 0.8	Y N N N N	NM(+15.99)TVKQLSAKAEELLKKLLAKKA LGMESLKQLSAKAEELLKKLLAKKA GFKSMLF VEPKFLF ESEPGLPLL TAGLPLLALL	U_{20} -Mri1a U_{20} -Mri1a U_{10} -Mri1a U_{3} -Mri1a U_{3} -Mri1a
28728 30848 14112 18050 21865 37223 42020	20.1 22 6.1 7.9 8.8 8.7	88 88 88 88 88 88 88 88 88 87	515.1099 457.6122 415.2178 440.2518 477.76 491.3212 514.3315	5 2 2 2 2 2 2 2	81.73 86.71 52.47 59.68 68.39 98.36 106.7	2570.5193 2739.6294 828.4203 878.4902 953.5069 980.627 1026.6477	-2.5 0.1 0.8 -1.2 -1.4 0.8 0.8	Y N N N N N	NM(+15.99)TVKQLSAKAEELLKKLLAKKA LGMESLKQLSAKAEELLKKLLAKKA GFKSMLF VEPKFLF ESEPGLPLL TAGLPLLALL FAGLPLLALL	$U_{20}-Mri1a \\ U_{20}-Mri1a \\ U_{10}-Mri1a \\ U_{3}-Mri1a \\ U_{3}-Mrina \\ U_{3}-Mrina$
28728 30848 14112 18050 21865 37223 42020 17223	20.1 22 6.1 7.9 8.8 8.7 7.9	88 88 88 88 88 88 88 87 87	515.1099 457.6122 415.2178 440.2518 477.76 491.3212 514.3315 529.2786	5 2 2 2 2 2 2 2 2 2	81.73 86.71 52.47 59.68 68.39 98.36 106.7 58.12	2570.5193 2739.6294 828.4203 878.4902 953.5069 980.627 1026.6477 1056.5427	-2.5 0.1 0.8 -1.2 -1.4 0.8 0.8 -0.1	Y N N N N N N	NM(+15.99)TVKQLSAKAEELLKKLLAKKA LGMESLKQLSAKAEELLKKLLAKKA GFKSMLF VEPKFLF ESEPGLPLL TAGLPLLALL FAGLPLLALL MTLPFLQHA	$U_{20}-Mri1a \\ U_{20}-Mri1a \\ U_{10}-Mri1a \\ U_{3}-Mri1a \\ U_{3}-Mrina \\ U_{3}-Mrina$
28728 30848 14112 18050 21865 37223 42020 17223 19971	20.1 22 6.1 7.9 8.8 8.7 7.9 8.7	88 88 88 88 88 88 87 87 87 87	515.1099 457.6122 415.2178 440.2518 477.76 491.3212 514.3315 529.2786 538.8071	5 2 2 2 2 2 2 2 2 2 2 2 2 2	81.73 86.71 52.47 59.68 68.39 98.36 106.7 58.12 63.7	2570.5193 2739.6294 828.4203 878.4902 953.5069 980.627 1026.6477 1056.5427 1075.6025	-2.5 0.1 0.8 -1.2 -1.4 0.8 0.8 -0.1 -2.6	Y N N N N N N	NM(+15.99)TVKQLSAKAEELLKKLLAKKA LGMESLKQLSAKAEELLKKLLAKKA GFKSMLF VEPKFLF ESEPGLPLL TAGLPLLALL FAGLPLLALL MTLPFLQHA NNVPKLTPPP	$U_{20}-Mri1a \\ U_{20}-Mri1a \\ U_{10}-Mri1a \\ U_{3}-Mri1a \\ U_{3}-Mrina \\ U_{3}-Mrina$
28728 30848 14112 18050 21865 37223 42020 17223 19971 14101	20.1 22 6.1 7.9 8.8 8.7 7.9 8.7 9.5	88 88 88 88 88 88 87 87 87 87 87	515.1099 457.6122 415.2178 440.2518 477.76 491.3212 514.3315 529.2786 538.8071 386.914	5 6 2 2 2 2 2 2 2 2 2 3	81.73 86.71 52.47 59.68 68.39 98.36 106.7 58.12 63.7 52.45	2570.5193 2739.6294 828.4203 878.4902 953.5069 980.627 1026.6477 1056.5427 1075.6025 1157.7205	-2.5 0.1 0.8 -1.2 -1.4 0.8 0.8 -0.1 -2.6 -0.2	Y N N N N N N N	NM(+15.99)TVKQLSAKAEELLKKLLAKKA LGMESLKQLSAKAEELLKKLLAKKA GFKSMLF VEPKFLF ESEPGLPLL TAGLPLLALL FAGLPLLALL MTLPFLQHA NNVPKLTPPP SMLAKAALKLL	$U_{20}-Mri1a \\ U_{20}-Mri1a \\ U_{10}-Mri1a \\ U_{3}-Mri1a \\ U_{3}-Mri1a \\ U_{3}-Mri1a \\ U_{3}-Mri1a \\ U_{3}-Mri1a \\ U_{3}-Mri1a \\ U_{10}-Mri1a \\ U_{10}-Mrina \\ U_{10}-Mri$
28728 30848 14112 18050 21865 37223 42020 17223 19971 14101 42126	20.1 22 6.1 7.9 8.8 8.7 7.9 8.7 9.5 9.5	88 88 88 88 88 88 87 87 87 87 87 87	515.1099 457.6122 415.2178 440.2518 477.76 491.3212 514.3315 529.2786 538.8071 386.914 585.8624	5 6 2 2 2 2 2 2 2 2 3 3 2	81.73 86.71 52.47 59.68 68.39 98.36 106.7 58.12 63.7 52.45 106.9	2570.5193 2739.6294 828.4203 878.4902 953.5069 980.627 1026.6477 1056.5427 1075.6025 1157.7205 1169.7092	-2.5 0.1 0.8 -1.2 -1.4 0.8 0.8 -0.1 -2.6 -0.2 0.9	Y N N N N N N N Y	NM(+15.99)TVKQLSAKAEELLKKLLAKKA LGMESLKQLSAKAEELLKKLLAKKA GFKSMLF VEPKFLF ESEPGLPLL TAGLPLLALL FAGLPLLALL MTLPFLQHA NNVPKLTPPP SMLAKAALKLL AVPLLALLM(+15.99)TL	$\begin{array}{c} U_{20}\text{-}Mri1a\\ U_{20}\text{-}Mri1a\\ U_{10}\text{-}Mri1a\\ U_{3}\text{-}Mri1a\\ U_{3}\text{-}Mri1a\\ U_{3}\text{-}Mri1a\\ U_{3}\text{-}Mri1a\\ U_{3}\text{-}Mri1a\\ U_{10}\text{-}Mri1a\\ U_{3}\text{-}Mri1a\\ U_{3}\text{-}Mri1a\\ \end{array}$
28728 30848 14112 18050 21865 37223 42020 17223 19971 14101 42126 16737	20.1 22 6.1 7.9 8.8 8.7 7.9 8.7 9.5 9.5 11.4	88 88 88 88 88 88 87 87 87 87 87 87 87 8	515.1099 457.6122 415.2178 440.2518 477.76 491.3212 514.3315 529.2786 538.8071 386.914 585.8624 620.9026	5 2 2 2 2 2 2 2 2 3 2 2 3 2 2 2 2 2 2 2	81.73 86.71 52.47 59.68 68.39 98.36 106.7 58.12 63.7 52.45 106.9 57.38	2570.5193 2739.6294 828.4203 878.4902 953.5069 980.627 1026.6477 1056.5427 1075.6025 1157.7205 1169.7092 1239.7915	-2.5 0.1 0.8 -1.2 -1.4 0.8 0.8 -0.1 -2.6 -0.2 0.9 -0.6	Y N N N N N N N Y N	NM(+15.99)TVKQLSAKAEELLKKLLAKKA LGMESLKQLSAKAEELLKKLLAKKA GFKSMLF VEPKFLF ESEPGLPLL TAGLPLLALL FAGLPLLALL MTLPFLQHA NNVPKLTPPP SMLAKAALKLL AVPLLALLM(+15.99)TL VGGSLLAKAALKL	$U_{20}-Mri1a \\ U_{20}-Mri1a \\ U_{10}-Mri1a \\ U_{3}-Mri1a \\ U_{3}-Mri1a \\ U_{3}-Mri1a \\ U_{3}-Mri1a \\ U_{3}-Mri1a \\ U_{10}-Mri1a \\ U_{10}-Mri1a \\ U_{10}-Mri1a \\ U_{10}-Mri1c \\ U_{10}-Mrinc \\ U_{10}-Mr$
28728 30848 14112 18050 21865 37223 42020 17223 19971 14101 42126 16737 9229	20.1 22 6.1 7.9 8.8 8.7 7.9 8.7 9.5 9.5 9.5 11.4 12.1	88 88 88 88 88 88 87 87 87 87 87 87 87 8	515.1099 457.6122 415.2178 440.2518 477.76 491.3212 514.3315 529.2786 538.8071 386.914 585.8624 620.9026 422.9192	5 2 2 2 2 2 2 2 2 3 2 2 3 2 2 3 3	81.73 86.71 52.47 59.68 68.39 98.36 106.7 58.12 63.7 52.45 106.9 57.38 41.55	2570.5193 2739.6294 828.4203 878.4902 953.5069 980.627 1026.6477 1056.5427 1075.6025 1157.7205 1169.7092 1239.7915 1265.7344	-2.5 0.1 0.8 -1.2 -1.4 0.8 0.8 -0.1 -2.6 -0.2 0.9 -0.6 1	Y N N N N N N N N N N N N	NM(+15.99)TVKQLSAKAEELLKKLLAKKA LGMESLKQLSAKAEELLKKLLAKKA GFKSMLF VEPKFLF ESEPGLPLL TAGLPLLALL FAGLPLLALL MTLPFLQHA NNVPKLTPPP SMLAKAALKLL AVPLLALLM(+15.99)TL VGGSLLAKAALKL LVAPAAAEVLAGGK	$U_{20}-Mri1a \\ U_{20}-Mri1a \\ U_{10}-Mri1a \\ U_{3}-Mri1a \\ U_{3}-Mri1a \\ U_{3}-Mri1a \\ U_{3}-Mri1a \\ U_{3}-Mri1a \\ U_{10}-Mri1a \\ U_{10}-Mri1a \\ U_{10}-Mri1c \\ U_{10}-Mrinc \\ U_{10}-Mr$
28728 30848 14112 18050 21865 37223 42020 17223 19971 14101 42126 16737 9229 9896	20.1 22 6.1 7.9 8.8 8.7 7.9 8.7 9.5 9.5 11.4 12.1 10.4	88 88 88 88 88 87 87 87 87 87 87 87 87 8	515.1099 457.6122 415.2178 440.2518 477.76 491.3212 514.3315 529.2786 538.8071 386.914 585.8624 620.9026 422.9192 429.6131	5 2 2 2 2 2 2 2 2 2 3 2 2 3 3 3 3 3	81.73 86.71 52.47 59.68 68.39 98.36 106.7 58.12 63.7 52.45 106.9 57.38 41.55 43.33	2570.5193 2739.6294 828.4203 878.4902 953.5069 980.627 1026.6477 1056.5427 1075.6025 1157.7205 1169.7092 1239.7915 1265.7344 1285.8154	-2.5 0.1 0.8 -1.2 -1.4 0.8 0.8 -0.1 -2.6 -0.2 0.9 -0.6 1 1.6	Y N N N N N N N N N N N N	NM(+15.99)TVKQLSAKAEELLKKLLAKKA LGMESLKQLSAKAEELLKKLLAKKA GFKSMLF VEPKFLF ESEPGLPLL TAGLPLLALL FAGLPLLALL MTLPFLQHA NNVPKLTPPP SMLAKAALKLL AVPLLALLM(+15.99)TL VGGSLLAKAALKL LVAPAAAEVLAGGK MSLAKAALKLLK	$U_{20}-Mri1a$ $U_{20}-Mri1a$ $U_{10}-Mri1a$ $U_{3}-Mri1a$ $U_{3}-Mri1a$ $U_{3}-Mri1a$ $U_{3}-Mri1a$ $U_{3}-Mri1a$ $U_{10}-Mri1a$ $U_{10}-Mri1c$ $U_{10}-Mri1c$ $U_{10}-Mri1c$ $U_{10}-Mri1a$
28728 30848 14112 18050 21865 37223 42020 17223 19971 14101 42126 16737 9229 9896 9104	20.1 22 6.1 7.9 8.8 8.7 7.9 8.7 9.5 9.5 11.4 12.1 10.4 12.2	88 88 88 88 88 87 87 87 87 87 87 87 87 8	515.1099 457.6122 415.2178 440.2518 477.76 491.3212 514.3315 529.2786 538.8071 386.914 585.8624 620.9026 422.9192 429.6131 689.4073	5 2 2 2 2 2 2 2 2 3 2 2 3 3 2 3 3 2 2 3 2 2 3 3 2	81.73 86.71 52.47 59.68 68.39 98.36 106.7 58.12 63.7 52.45 106.9 57.38 41.55 43.33 41.25	2570.5193 2739.6294 828.4203 878.4902 953.5069 980.627 1026.6477 1056.5427 1075.6025 1157.7205 1169.7092 1239.7915 1265.7344 1285.8154 1376.8027	-2.5 0.1 0.8 -1.2 -1.4 0.8 0.8 -0.1 -2.6 -0.2 0.9 -0.6 1 1.6 -1.9	Y N N N N N N N N N N N	NM(+15.99)TVKQLSAKAEELLKKLLAKKA LGMESLKQLSAKAEELLKKLLAKKA GFKSMLF VEPKFLF ESEPGLPLL TAGLPLLALL FAGLPLLALL MTLPFLQHA NNVPKLTPPP SMLAKAALKLL AVPLLALLM(+15.99)TL VGGSLLAKAALKL LVAPAAAEVLAGGK MSLAKAALKLLK KLVAAPAAEVLAQP	$U_{20}-Mri1a$ $U_{20}-Mri1a$ $U_{10}-Mri1a$ $U_{3}-Mri1a$ $U_{3}-Mri1a$ $U_{3}-Mri1a$ $U_{3}-Mri1a$ $U_{3}-Mri1a$ $U_{10}-Mri1a$ $U_{10}-Mri1c$ $U_{10}-Mri1c$ $U_{10}-Mri1c$ $U_{10}-Mri1a$
28728 30848 14112 18050 21865 37223 42020 17223 19971 14101 42126 16737 9229 9896 9104 6735	20.1 22 6.1 7.9 8.8 8.7 7.9 8.7 9.5 9.5 11.4 12.1 10.4 12.2 12.2	88 88 88 88 88 87 87 87 87 87 87 87 87 8	515.1099 457.6122 415.2178 440.2518 477.76 491.3212 514.3315 529.2786 538.8071 386.914 585.8624 620.9026 422.9192 429.6131 689.4073 697.9221	5 2 2 2 2 2 2 2 2 3 2 3 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2	81.73 86.71 52.47 59.68 68.39 98.36 106.7 58.12 63.7 52.45 106.9 57.38 41.55 43.33 41.25 35.64	2570.5193 2739.6294 828.4203 878.4902 953.5069 980.627 1026.6477 1056.5427 1075.6025 1157.7205 1169.7092 1239.7915 1265.7344 1285.8154 1376.8027 1393.8293	-2.5 0.1 0.8 -1.2 -1.4 0.8 0.8 -0.1 -2.6 -0.2 0.9 -0.6 1 1.6 -1.9 0.3	Y N N N N N N N N N N N N N N	NM(+15.99)TVKQLSAKAEELLKKLLAKKA LGMESLKQLSAKAEELLKKLLAKKA GFKSMLF VEPKFLF ESEPGLPLL TAGLPLLALL FAGLPLLALL MTLPFLQHA NNVPKLTPPP SMLAKAALKLL AVPLLALLM(+15.99)TL VGGSLLAKAALKL LVAPAAAEVLAGGK MSLAKAALKLLK KLVAPAAAEVLAQP KLVAPAAAEVLANK	U ₂₀ -Mri1a U ₂₀ -Mri1a U ₁₀ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₁₀ -Mri1a U ₁₀ -Mri1a U ₁₀ -Mri1c U ₁₀ -Mri1c U ₁₀ -Mri1c U ₁₀ -Mri1c U ₁₀ -Mri1c
28728 30848 14112 18050 21865 37223 42020 17223 19971 14101 42126 16737 9229 9896 9104 6735 35076	20.1 22 6.1 7.9 8.8 8.7 7.9 8.7 9.5 9.5 11.4 12.1 10.4 12.2 12.2 12.2	88 88 88 88 88 87 87 87 87 87 87 87 87 8	515.1099 457.6122 415.2178 440.2518 477.76 491.3212 514.3315 529.2786 538.8071 386.914 585.8624 620.9026 422.9192 429.6131 689.4073 697.9221 732.4659	5 2 2 2 2 2 2 2 3 2 3 2 3 2 2 3 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2	81.73 86.71 52.47 59.68 68.39 98.36 106.7 58.12 63.7 52.45 106.9 57.38 41.55 43.33 41.25 35.64 93.92	2570.5193 2739.6294 828.4203 953.5069 980.627 1026.6477 1056.5427 1075.6025 1157.7205 1169.7092 1239.7915 1265.7344 1285.8154 1376.8027 1393.8293 1462.9121	-2.5 0.1 0.8 -1.2 -1.4 0.8 0.8 -0.1 -2.6 -0.2 0.9 -0.6 1 1.6 -1.9 0.3 3.5	Y N N N N N N N N N N N N N N N N N N N	NM(+15.99)TVKQLSAKAEELLKKLLAKKA LGMESLKQLSAKAEELLKKLLAKKA GFKSMLF VEPKFLF ESEPGLPLL TAGLPLLALL FAGLPLLALL MTLPFLQHA NNVPKLTPPP SMLAKAALKLL AVPLLALLM(+15.99)TL VGGSLLAKAALKL LVAPAAAEVLAGGK MSLAKAALKLLK KLVAPAAAEVLAQP KLVAPAAAEVLANK PPESLLAKAALKLL	U ₂₀ -Mri1a U ₂₀ -Mri1a U ₁₀ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₁₀ -Mri1a U ₁₀ -Mri1a U ₁₀ -Mri1c U ₁₀ -Mri1c U ₁₀ -Mri1c U ₁₀ -Mri1c U ₁₀ -Mri1c U ₁₀ -Mri1c
28728 30848 14112 18050 21865 37223 42020 17223 19971 14101 42126 16737 9229 9896 9104 6735 35076 41720	20.1 22 6.1 7.9 8.8 8.7 7.9 8.7 9.5 9.5 11.4 12.1 10.4 12.2 12.2 12.2 11.3	88 88 88 88 88 87 87 87 87 87 87 87 87 8	515.1099 457.6122 415.2178 440.2518 477.76 491.3212 514.3315 529.2786 538.8071 386.914 585.8624 620.9026 422.9192 429.6131 689.4073 697.9221 732.4659 748.9018	5 6 2 2 2 2 2 2 3 2 3 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2	81.73 86.71 52.47 59.68 68.39 98.36 106.7 58.12 63.7 52.45 106.9 57.38 41.55 43.33 41.25 35.64 93.92 106.3	2570.5193 2739.6294 828.4203 878.4902 953.5069 980.627 1026.6477 1056.5427 1075.6025 1157.7205 1169.7092 1239.7915 1265.7344 1285.8154 1376.8027 1393.8293 1462.9121 1495.8035	-2.5 0.1 0.8 -1.2 -1.4 0.8 0.8 -0.1 -2.6 -0.2 0.9 -0.6 1 1.6 -1.9 0.3 3.5 -9.6	Y N N N N N N N N N N N N N N N N N N N	NM(+15.99)TVKQLSAKAEELLKKLLAKKA LGMESLKQLSAKAEELLKKLLAKKA GFKSMLF VEPKFLF ESEPGLPLL TAGLPLLALL FAGLPLLALL MTLPFLQHA NNVPKLTPPP SMLAKAALKLL AVPLLALLM(+15.99)TL VGGSLLAKAALKL LVAPAAAEVLAGGK MSLAKAALKLLK KLVAPAAAEVLAQP KLVAPAAAEVLANK PPESLLAKAALKLL NTELPFLQHALTL	U ₂₀ -Mri1a U ₂₀ -Mri1a U ₁₀ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₁₀ -Mri1a U ₁₀ -Mri1a U ₁₀ -Mri1c U ₁₀ -Mri1c
28728 30848 14112 18050 21865 37223 42020 17223 19971 14101 42126 16737 9229 9896 9104 6735 35076 41720 20914	20.1 22 6.1 7.9 8.8 8.7 7.9 8.7 9.5 9.5 11.4 12.1 10.4 12.2 12.2 12.2 11.3 13	88 88 88 88 88 87 87 87 87 87 87 87 87 8	515.1099 457.6122 415.2178 440.2518 477.76 491.3212 514.3315 529.2786 538.8071 386.914 585.8624 620.9026 422.9192 429.6131 689.4073 697.9221 732.4659 748.9018 776.4336	5 6 2 2 2 2 2 2 3 2 3 2 2 3 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2	81.73 86.71 52.47 59.68 68.39 98.36 106.7 58.12 63.7 52.45 106.9 57.38 41.55 43.33 41.25 35.64 93.92 106.3 66.32	2570.5193 2739.6294 828.4203 953.5069 980.627 1026.6477 1056.5427 1075.6025 1157.7205 1169.7092 1239.7915 1265.7344 1285.8154 1376.8027 1393.8293 1462.9121 1495.8035	-2.5 0.1 0.8 -1.2 -1.4 0.8 0.8 -0.1 -2.6 -0.2 0.9 -0.6 1 1.6 -1.9 0.3 3.5 -9.6 -1.8	Y N N N N N N N N N N N N N N N N N N N	NM(+15.99)TVKQLSAKAEELLKKLLAKKA LGMESLKQLSAKAEELLKKLLAKKA GFKSMLF VEPKFLF ESEPGLPLL TAGLPLLALL FAGLPLLALL MTLPFLQHA NNVPKLTPPP SMLAKAALKLL AVPLLALLM(+15.99)TL VGGSLLAKAALKL LVAPAAAEVLAGGK MSLAKAALKLLK KLVAPAAAEVLAQP KLVAPAAAEVLANK PPESLLAKAALKLL NTELPFLQHALTL VVAGDPLDPKVLESL	U ₂₀ -Mri1a U ₂₀ -Mri1a U ₁₀ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₁₀ -Mri1a U ₁₀ -Mri1c U ₁₀ -Mri1a U ₁₂ -Mri1a
28728 30848 14112 18050 21865 37223 42020 17223 19971 14101 42126 16737 9229 9896 9104 6735 35076 41720 20914 34360	20.1 22 6.1 6.1 7.9 8.8 8.7 9.5 9.5 11.4 12.1 10.4 12.2 12.2 12.2 11.3 13 13.9	88 88 88 88 88 87 87 87 87 87 87 87 87 8	515.1099 457.6122 415.2178 440.2518 477.76 491.3212 514.3315 529.2786 538.8071 386.914 585.8624 620.9026 422.9192 429.6131 689.4073 697.9221 732.4659 748.9018 776.4336 782.4961	5 6 2 2 2 2 2 2 2 2 3 3 2 2 3 3 2 2 2 2 2	81.73 86.71 52.47 59.68 68.39 98.36 106.7 58.12 63.7 52.45 106.9 57.38 41.55 43.33 41.25 35.64 93.92 106.3 66.32 92.7	2570.5193 2739.6294 828.4203 878.4902 953.5069 980.627 1026.6477 1056.5427 1075.6025 1157.7205 1169.7092 1239.7915 1265.7344 1285.8154 1376.8027 1393.8293 1462.9121 1495.8035 1550.8555 1562.9758	-2.5 0.1 0.8 -1.2 -1.4 0.8 0.8 -0.1 -2.6 -0.2 0.9 -0.6 1 1.6 -1.9 0.3 3.5 -9.6 -1.8 1.2	Y N N N N N N N N N N N N N N N N N N N	NM(+15.99)TVKQLSAKAEELLKKLLAKKA LGMESLKQLSAKAEELLKKLLAKKA GFKSMLF VEPKFLF ESEPGLPLL TAGLPLLALL FAGLPLLALL MTLPFLQHA NNVPKLTPPP SMLAKAALKLL AVPLLALLM(+15.99)TL VGGSLLAKAALKL LVAPAAAEVLAGGK MSLAKAALKLLK KLVAPAAAEVLAQP KLVAPAAAEVLAQP KLVAPAAAEVLANK PPESLLAKAALKLL NTELPFLQHALTL VVAGDPLDPKVLESL PTAPGSLLAAKALKLL	U ₂₀ -Mri1a U ₂₀ -Mri1a U ₁₀ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₁₀ -Mri1a U ₁₀ -Mri1c U ₁₀ -Mri1a U ₁₂ -Mri1a U ₁₂ -Mri1a U ₁₀ -Mri1c
28728 30848 14112 18050 21865 37223 42020 17223 19971 14101 42126 16737 9229 9896 9104 6735 35076 41720 20914 34360 34296	20.1 22 6.1 7.9 8.8 8.7 7.9 8.7 9.5 9.5 11.4 12.1 10.4 12.2 12.2 12.2 11.3 13.9 13	88 88 88 88 87 87 87 87 87 87 87 87 87 8	515.1099 457.6122 415.2178 440.2518 477.76 491.3212 514.3315 529.2786 538.8071 386.914 585.8624 620.9026 422.9192 429.6131 689.4073 697.9221 732.4659 748.9018 776.4336 782.4961 782.9148	5 6 2 2 2 2 2 2 2 2 2 3 3 2 2 3 3 2 2 2 2	81.73 86.71 52.47 59.68 68.39 98.36 106.7 58.12 63.7 52.45 106.9 57.38 41.55 43.33 41.25 35.64 93.92 106.3 66.32 92.7 92.6	2570.5193 2739.6294 828.4203 878.4902 953.5069 980.627 1026.6477 1056.5427 1075.6025 1157.7205 1169.7092 1239.7915 1265.7344 1285.8154 1376.8027 1393.8293 1462.9121 1495.8035 1550.8555 1562.9758 1563.8118	-2.5 0.1 0.8 -1.2 -1.4 0.8 0.8 -0.1 -2.6 -0.2 0.9 -0.6 1 1.6 -1.9 0.3 3.5 -9.6 -1.8 1.2 2.1	Y N N N N N N N N N N N N N N N N N N N	NM(+15.99)TVKQLSAKAEELLKKLLAKKA LGMESLKQLSAKAEELLKKLLAKKA GFKSMLF VEPKFLF ESEPGLPLL TAGLPLLALL FAGLPLLALL MTLPFLQHA NNVPKLTPPP SMLAKAALKLL AVPLLALLM(+15.99)TL VGGSLLAKAALKL LVAPAAAEVLAGGK MSLAKAALKLLK KLVAPAAAEVLAQP KLVAPAAAEVLAQP KLVAPAAAEVLANK PPESLLAKAALKLL NTELPFLQHALTL VVAGDPLDPKVLESL PTAPGSLLAAKALKLL PPTATAAAAFMKLFQ	U ₂₀ -Mri1a U ₂₀ -Mri1a U ₁₀ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₁₀ -Mri1a U ₁₀ -Mri1a U ₁₀ -Mri1c U ₁₀ -Mri1a U ₁₂ -Mri1a U ₁₂ -Mri1a
28728 30848 14112 18050 21865 37223 42020 17223 19971 14101 42126 16737 9229 9896 9104 6735 35076 41720 20914 34360 34296 20809	20.1 22 6.1 7.9 8.8 8.7 7.9 8.7 9.5 9.5 11.4 12.1 10.4 12.2 12.2 12.2 11.3 13.9 13 13	88 88 88 88 88 87 87 87 87 87 87 87 87 8	515.1099 457.6122 415.2178 440.2518 477.76 491.3212 514.3315 529.2786 538.8071 386.914 585.8624 620.9026 422.9192 429.6131 689.4073 697.9221 732.4659 748.9018 776.4336 782.4961 782.9148 791.4424	5 6 2 2 2 2 2 2 2 3 3 2 2 3 3 2 2 2 2 2 2	81.73 86.71 52.47 59.68 68.39 98.36 106.7 58.12 63.7 52.45 106.9 57.38 41.55 43.33 41.25 35.64 93.92 106.3 66.32 92.7 92.6 66.06	2570.5193 2739.6294 828.4203 878.4902 953.5069 980.627 1026.6477 1056.5427 1075.6025 1157.7205 1169.7092 1239.7915 1265.7344 1285.8154 1376.8027 1393.8293 1462.9121 1495.8035 1550.8555 1562.9758 1563.8118 1580.866	-2.5 0.1 0.8 -1.2 -1.4 0.8 0.8 -0.1 -2.6 -0.2 0.9 -0.6 1 1.6 -1.9 0.3 3.5 -9.6 -1.8 1.2 2.1 2.7	Y N N N N N N N N N N N N N N N N N N N	NM(+15.99)TVKQLSAKAEELLKKLLAKKA LGMESLKQLSAKAEELLKKLLAKKA GFKSMLF VEPKFLF ESEPGLPLL TAGLPLLALL FAGLPLLALL MTLPFLQHA NNVPKLTPPP SMLAKAALKLL AVPLLALLM(+15.99)TL VGGSLLAKAALKL LVAPAAAEVLAGGK MSLAKAALKLLK KLVAPAAAEVLAQP KLVAPAAAEVLAQP KLVAPAAAEVLANK PPESLLAKAALKLL NTELPFLQHALTL VVAGDPLDPKVLESL PTAPGSLLAAAAKLKLL PPTATAAAAFMKLFQ VVTGDPLDPKVLESL	U ₂₀ -Mri1a U ₂₀ -Mri1a U ₁₀ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₁₀ -Mri1a U ₁₀ -Mri1c U ₁₀ -Mri1a U ₁₂ -Mri1a U ₁₂ -Mri1a U ₁₂ -Mri1a
28728 30848 14112 18050 21865 37223 42020 17223 19971 14101 42126 16737 9229 9896 9104 6735 35076 41720 20914 34360 34296 20809 27433	20.1 22 6.1 7.9 8.8 8.7 7.9 8.7 9.5 9.5 11.4 12.1 10.4 12.2 12.2 12.2 11.3 13 13.9 13 13 13	88 88 88 88 88 87 87 87 87 87 87 87 87 8	515.1099 457.6122 415.2178 440.2518 477.76 491.3212 514.3315 529.2786 538.8071 386.914 585.8624 620.9026 422.9192 429.6131 689.4073 697.9221 732.4659 748.9018 776.4336 782.4961 782.9148 791.4424 542.6653	5 6 2 2 2 2 2 2 3 3 2 2 3 3 2 2 3 2 2 2 2	81.73 86.71 52.47 59.68 68.39 98.36 106.7 58.12 63.7 52.45 106.9 57.38 41.55 43.33 41.25 35.64 93.92 106.3 66.32 92.7 92.6 66.06 79.12	2570.5193 2739.6294 828.4203 878.4902 953.5069 980.627 1026.6477 1056.5427 1075.6025 1157.7205 1169.7092 1239.7915 1265.7344 1285.8154 1376.8027 1393.8293 1462.9121 1495.8035 1550.8555 1562.9758 1563.8118 1580.866 1624.9697	-2.5 0.1 0.8 -1.2 -1.4 0.8 0.8 -0.1 -2.6 -0.2 0.9 -0.6 1 1.6 -1.9 0.3 3.5 -9.6 -1.8 1.2 2.1 2.7 2.8	Y N N N N N N N N N N N N N N N N N N N	NM(+15.99)TVKQLSAKAEELLKKLLAKKA LGMESLKQLSAKAEELLKKLLAKKA GFKSMLF VEPKFLF ESEPGLPLL TAGLPLLALL FAGLPLLALL MTLPFLQHA NNVPKLTPPP SMLAKAALKLL AVPLLALLM(+15.99)TL VGGSLLAKAALKL LVAPAAAEVLAGGK MSLAKAALKLLK KLVAPAAAEVLAQP KLVAPAAAEVLAQP KLVAPAAAEVLANK PPESLLAKAALKLL NTELPFLQHALTL VVAGDPLDPKVLESL PTAPGSLLAAAAKLKL PPTATAAAAFMKLFQ VVTGDPLDPKVLESL QPNKSMLAKAALKLL	U ₂₀ -Mri1a U ₂₀ -Mri1a U ₁₀ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₁₀ -Mri1a U ₁₀ -Mri1c U ₁₀ -Mri1a U ₁₂ -Mri1a U ₁₂ -Mri1a U ₁₂ -Mri1a U ₁₂ -Mri1a U ₁₂ -Mri1a
28728 30848 14112 18050 21865 37223 42020 17223 19971 14101 42126 16737 9229 9896 9104 6735 35076 41720 20914 34360 34296 20809 27433 16629	20.1 22 6.1 7.9 8.8 8.7 7.9 8.7 9.5 9.5 11.4 12.1 10.4 12.2 12.2 11.3 13. 13. 13. 13. 13. 13. 13	88 88 88 88 88 87 87 87 87 87 87 87 87 8	515.1099 457.6122 415.2178 440.2518 477.76 491.3212 514.3315 529.2786 538.8071 386.914 585.8624 620.9026 422.9192 429.6131 689.4073 697.9221 732.4659 748.9018 776.4336 782.4961 782.9148 791.4424 542.6653 664.7019	5 6 2 2 2 2 2 2 2 2 3 3 2 2 3 3 2 2 2 2 2	81.73 86.71 52.47 59.68 68.39 98.36 106.7 58.12 63.7 52.45 106.9 57.38 41.55 43.33 41.25 35.64 93.92 106.3 66.32 92.7 92.6 66.06 79.12 56.92	2570.5193 2739.6294 828.4203 878.4902 953.5069 980.627 1026.6477 1056.5427 1075.6025 1157.7205 1169.7092 1239.7915 1265.7344 1285.8154 1376.8027 1393.8293 1462.9121 1495.8035 1550.8555 1562.9758 1563.8118 1580.866 1624.9697 1991.084	-2.5 0.1 0.8 -1.2 -1.4 0.8 0.8 -0.1 -2.6 -0.2 0.9 -0.6 1 1.6 -1.9 0.3 3.5 -9.6 -1.8 1.2 2.1 2.7 2.8 0	Y N N N N N N N N N N N N N N N N N N N	NM(+15.99)TVKQLSAKAEELLKKLLAKKA LGMESLKQLSAKAEELLKKLLAKKA GFKSMLF VEPKFLF ESEPGLPLL TAGLPLLALL FAGLPLLALL MTLPFLQHA NNVPKLTPPP SMLAKAALKLL AVPLLALLM(+15.99)TL VGGSLLAKAALKL LVAPAAAEVLAGGK MSLAKAALKLLK KLVAPAAAEVLAQP KLVAPAAAEVLAQP KLVAPAAAEVLANK PPESLLAKAALKLL NTELPFLQHALTL VVAGDPLDPKVLESL PTAPGSLLAAKALKLL PPTATAAAAFMKLFQ VVTGDPLDPKVLESL QPNKSMLAKAALKLL NAALKKGLFDQLDKAAAAF	U ₂₀ -Mri1a U ₂₀ -Mri1a U ₁₀ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₁₀ -Mri1a U ₁₀ -Mri1c U ₁₀ -Mri1a U ₁₂ -Mri1a
28728 30848 14112 18050 21865 37223 42020 17223 19971 14101 42126 16737 9229 9896 9104 6735 35076 41720 20914 34360 34296 20809 27433 16629 39500	20.1 22 6.1 7.9 8.8 8.7 7.9 8.7 9.5 9.5 11.4 12.1 10.4 12.2 12.2 12.2 11.3 13. 13. 13. 13. 13. 13. 13	88 88 88 88 88 87	515.1099 457.6122 415.2178 440.2518 477.76 491.3212 514.3315 529.2786 538.8071 386.914 585.8624 620.9026 422.9192 429.6131 689.4073 697.9221 732.4659 748.9018 776.4336 782.4961 782.9148 791.4424 542.6653 664.7019 686.4333	5 6 2 2 2 2 2 2 2 3 3 2 2 2 3 3 2 2 2 2 2	81.73 86.71 52.47 59.68 68.39 98.36 106.7 58.12 63.7 52.45 106.9 57.38 41.55 43.33 41.25 35.64 93.92 106.3 66.32 92.7 92.6 66.06 79.12 56.92 102.5	2570.5193 2739.6294 828.4203 878.4902 953.5069 980.627 1026.6477 1056.5427 1075.6025 1157.7205 1169.7092 1239.7915 1265.7344 1285.8154 1376.8027 1393.8293 1462.9121 1495.8035 1562.9758 1563.8118 1580.866 1624.9697 1991.084 2056.2883	-2.5 0.1 0.8 -1.2 -1.4 0.8 0.8 -0.1 -2.6 -0.2 0.9 -0.6 1 1.6 -1.9 0.3 3.5 -9.6 -1.8 1.2 2.1 2.7 2.8 0 0 -5	Y N N N N N N N N N N N N N N N N N N N	NM(+15.99)TVKQLSAKAEELLKKLLAKKA LGMESLKQLSAKAEELLKKLLAKKA GFKSMLF VEPKFLF ESEPGLPLL TAGLPLLALL FAGLPLLALL MTLPFLQHA NNVPKLTPPP SMLAKAALKLL AVPLLALLM(+15.99)TL VGGSLLAKAALKL LVAPAAAEVLAGGK MSLAKAALKLLK KLVAPAAAEVLAQP KLVAPAAAEVLAQP KLVAPAAAEVLANK PPESLLAKAALKLL NTELPFLQHALTL VVAGDPLDPKVLESL PTAPGSLLAAKALKLL PPTATAAAAFMKLFQ VVTGDPLDPKVLESL QPNKSMLAKAALKLL NAALKKGLFDQLDKAAAAF VGGTVLAKAALKLLAKAAPKH	U ₂₀ -Mri1a U ₂₀ -Mri1a U ₁₀ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₁₀ -Mri1a U ₁₀ -Mri1c U ₁₀ -Mri1a U ₁₀ -Mri1a U ₁₂ -Mri1a U ₁₂ -Mri1a U ₁₂ -Mri1a U ₁₂ -Mri1a U ₁₂ -Mri1a U ₁₂ -Mri1a U ₁₀ -Mri1a U ₁₀ -Mri1a
28728 30848 14112 18050 21865 37223 42020 17223 19971 14101 42126 16737 9229 9896 9104 6735 35076 41720 20914 34360 34296 20809 27433 16629 39500 27899	20.1 22 6.1 7.9 8.8 8.7 7.9 8.7 9.5 9.5 11.4 12.1 10.4 12.2 12.2 12.2 11.3 13 13 13 13 13 13 13 13 13 1	88 88 88 88 88 87 87 87 87 87 87 87 87 8	515.1099 457.6122 415.2178 440.2518 477.76 491.3212 514.3315 529.2786 538.8071 386.914 585.8624 620.9026 422.9192 429.6131 689.4073 697.9221 732.4659 748.9018 776.4336 782.4961 782.9148 791.4424 542.6653 664.7019 686.4333 446.6631	5 6 2 2 2 2 2 2 2 2 2 2 3 3 2 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 3 2 2 2 2 3 3 3 2 2 2 2 3 3 3 2 2 2 2 2 2 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 3 3 3 2 2 2 2 2 2 2 2 2 3 3 3 2 2 2 2 2 2 2 2 2 2 2 3 3 3 2	81.73 86.71 52.47 59.68 68.39 98.36 106.7 58.12 63.7 52.45 106.9 57.38 41.55 43.33 41.25 35.64 93.92 106.3 66.32 92.7 92.6 66.06 79.12 56.92 102.5 79.96	2570.5193 2739.6294 828.4203 878.4902 953.5069 980.627 1026.6477 1056.5427 1075.6025 1157.7205 1169.7092 1239.7915 1265.7344 1285.8154 1376.8027 1393.8293 1462.9121 1495.8035 1562.9758 1563.8118 1580.866 1624.9697 1991.084 2056.2883 2228.2812	-2.5 0.1 0.8 -1.2 -1.4 0.8 0.8 -0.1 -2.6 -0.2 0.9 -0.6 1 1.6 -1.9 0.3 3.5 -9.6 -1.8 1.2 2.1 2.7 2.8 0 -5 -0.8	Y N N N N N N N N N N N N N N N N N N N	NM(+15.99)TVKQLSAKAEELLKKLLAKKA LGMESLKQLSAKAEELLKKLLAKKA GFKSMLF VEPKFLF ESEPGLPLL TAGLPLLALL FAGLPLLALL MTLPFLQHA NNVPKLTPPP SMLAKAALKLL AVPLLALLM(+15.99)TL VGGSLLAKAALKL LVAPAAAEVLAGGK MSLAKAALKLLK KLVAPAAAEVLAQP KLVAPAAAEVLAQP KLVAPAAAEVLAQP KLVAPAAAEVLANK PPESLLAKAALKLL NTELPFLQHALTL VVAGDPLDPKVLESL PTAPGSLLAAKALKLL PPTATAAAAFMKLFQ VVTGDPLDPKVLESL QPNKSMLAKAALKLL NAALKKGLFDQLDKAAAAF VGGTVLAKAALKLLAKAAPKH GLMELSKQLSAKAEELLKKL	U ₂₀ -Mri1a U ₂₀ -Mri1a U ₁₀ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₁₀ -Mri1a U ₁₀ -Mri1c U ₁₀ -Mri1a U ₁₀ -Mri1a U ₁₂ -Mri1a U ₁₂ -Mri1a U ₁₂ -Mri1a U ₁₂ -Mri1a U ₁₂ -Mri1a U ₁₃ -Mri1a U ₁₀ -Mri1c U ₁₃ -Mri1a U ₁₀ -Mri1c U ₁₀ -Mri1a U ₁₀ -Mri1a
28728 30848 14112 18050 21865 37223 42020 17223 19971 14101 42126 16737 9229 9896 9104 6735 35076 41720 20914 34360 34296 20809 27433 16629 39500 27899 36795	20.1 22 6.1 7.9 8.8 8.7 7.9 8.7 9.5 9.5 11.4 12.1 10.4 12.2 12.2 12.2 11.3 13 13 13 13 13 13 13 13 13 1	88 88 88 88 88 87 87 87 87 87 87 87 87 8	515.1099 457.6122 415.2178 440.2518 477.76 491.3212 514.3315 529.2786 538.8071 386.914 585.8624 620.9026 422.9192 429.6131 689.4073 697.9221 732.4659 748.9018 776.4336 782.9148 791.4424 542.6653 664.7019 686.4333 446.6631 762.4874	5 6 2 2 2 2 2 2 2 3 2 2 3 3 2 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 2 3 3 3 2 2 2 2 3 3 3 2 2 2 2 3 3 3 2 2 2 2 2 2 2 2 3 3 3 2 2 2 2 2 3 3 3 2	81.73 86.71 52.47 59.68 68.39 98.36 106.7 58.12 63.7 52.45 106.9 57.38 41.55 43.33 41.25 35.64 93.92 106.3 66.32 92.7 92.6 66.06 79.12 56.92 102.5 79.96 97.98	2570.5193 2739.6294 828.4203 878.4902 953.5069 980.627 1026.6477 1056.5427 1075.6025 1157.7205 1169.7092 1239.7915 1265.7344 1285.8154 1376.8027 1393.8293 1462.9121 1495.8035 1562.9758 1563.8118 1580.866 1624.9697 1991.084 2056.2883 2228.2812 2284.4609	-2.5 0.1 0.8 -1.2 -1.4 0.8 0.8 -0.1 -2.6 -0.2 0.9 -0.6 1 1.6 -1.9 0.3 3.5 -9.6 -1.8 1.2 2.1 2.7 2.8 0 -5 -0.8 -9 -0.8	Y N N N N N N N N N N N N N N N N N N N	NM(+15.99)TVKQLSAKAEELLKKLLAKKA LGMESLKQLSAKAEELLKKLLAKKA GFKSMLF VEPKFLF ESEPGLPLL TAGLPLLALL FAGLPLLALL MTLPFLQHA NNVPKLTPPP SMLAKAALKLL AVPLLALLM(+15.99)TL VGGSLLAKAALKL LVAPAAAEVLAGGK MSLAKAALKLLK KLVAPAAAEVLAQP KLVAPAAAEVLAQP KLVAPAAAEVLANK PPESLLAKAALKLL NTELPFLQHALTL VVAGDPLDPKVLESL PTAPGSLLAAKALKLL PPTATAAAAFMKLFQ VVTGDPLDPKVLESL QPNKSMLAKAALKLL NAALKKGLFDQLDKAAAAF VGGTVLAKAALKLLAKAAPKH GLMELSKQLSAKAEELLKKL	U ₂₀ -Mri1a U ₂₀ -Mri1a U ₃₀ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₁₀ -Mri1c U ₁₀ -Mri1a U ₁₂ -Mri1a U ₁₂ -Mri1a U ₁₂ -Mri1a U ₁₂ -Mri1a U ₁₃ -Mri1a U ₁₃ -Mri1a U ₁₀ -Mri1c U ₁₃ -Mri1a U ₁₀ -Mri1c U ₁₀ -Mri1c
28728 30848 14112 18050 21865 37223 42020 17223 19971 14101 42126 16737 9229 9896 9104 6735 35076 41720 20914 34360 34296 20809 27433 16629 39500 27899 36795 29000	20.1 22 6.1 7.9 8.8 8.7 7.9 8.7 9.5 9.5 11.4 12.1 10.4 12.2 12.2 12.2 11.3 13 13 13 13 13 13 13 13 13 1	88 88 88 88 88 87 87 87 87 87 87 87 87 8	515.1099 457.6122 415.2178 440.2518 477.76 491.3212 514.3315 529.2786 538.8071 386.914 585.8624 620.9026 422.9192 429.6131 689.4073 697.9221 732.4659 748.9018 776.4336 782.9148 791.4424 542.6653 664.7019 686.4333 446.6631 762.4874 643.6553	5 6 2 2 2 2 2 2 3 3 2 2 2 3 3 2 2 2 2 2 2	81.73 86.71 52.47 59.68 68.39 98.36 106.7 58.12 63.7 52.45 106.9 57.38 41.55 43.33 41.25 35.64 93.92 106.3 66.32 92.7 92.6 66.06 79.12 56.92 102.5 79.96 97.98 82.35	2570.5193 2739.6294 828.4203 878.4902 953.5069 980.627 1026.6477 1056.5427 1075.6025 1157.7205 1169.7092 1239.7915 1265.7344 1285.8154 1376.8027 1393.8293 1462.9121 1495.8035 1562.9758 1563.8118 1580.866 1624.9697 1991.084 2056.2883 2228.2812 2284.4609 2570.5522	-2.5 0.1 0.8 -1.2 -1.4 0.8 0.8 -0.1 -2.6 -0.2 0.9 -0.6 1 1.6 -1.9 0.3 3.5 -9.6 -1.8 1.2 2.1 2.7 2.8 0 -5 -0.8 -9 15.6	Y N N N N N N N N N N N N N N N N N N N	NM(+15.99)TVKQLSAKAEELLKKLLAKKA LGMESLKQLSAKAEELLKKLLAKKA GFKSMLF VEPKFLF ESEPGLPLL TAGLPLLALL FAGLPLLALL MTLPFLQHA NNVPKLTPPP SMLAKAALKLL AVPLLALLM(+15.99)TL VGGSLLAKAALKL LVAPAAAEVLAGGK MSLAKAALKLLK KLVAPAAAEVLAQP KLVAPAAAEVLAQP KLVAPAAAEVLAQP KLVAPAAAEVLAQP KLVAPAAAEVLAQP KLVAPAAAEVLAQP KLVAPAAAEVLAQP VYGGPLDPKVLESL PTAPGSLLAKAALKLL PPTATAAAAFMKLFQ VVTGDPLDPKVLESL QPNKSMLAKAALKLL NAALKKGLFDQLDKAAAAF VGGTVLAKAALKLLAKAAPKH GLMELSKQLSAKAEELLKKL	U ₂₀ -Mri1a U ₂₀ -Mri1a U ₃₀ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₁₀ -Mri1c U ₁₀ -Mri1a U ₁₀ -Mri1a U ₁₂ -Mri1a U ₁₂ -Mri1a U ₁₂ -Mri1a U ₁₃ -Mri1a U ₁₂ -Mri1a U ₁₀ -Mri1c U ₁₃ -Mri1a U ₁₀ -Mri1c U ₁₃ -Mri1a U ₁₀ -Mri1c U ₁₀ -Mri1c U ₁₀ -Mri1a U ₁₀ -Mri1a U ₁₀ -Mri1a
28728 30848 14112 18050 21865 37223 42020 17223 19971 14101 42126 16737 9229 9896 9104 6735 35076 41720 20914 34360 34296 20809 27433 16629 39500 27899 36795 29000 35335	20.1 22 6.1 7.9 8.8 8.7 7.9 8.7 9.5 9.5 11.4 12.1 10.4 12.2 12.2 12.2 11.3 13 13 13 13 13 13 13 13 13 1	88 88 88 88 87	515.1099 457.6122 415.2178 440.2518 477.76 491.3212 514.3315 529.2786 538.8071 386.914 585.8624 620.9026 422.9192 429.6131 689.4073 697.9221 732.4659 748.9018 776.4336 782.4961 782.9148 791.4424 542.6653 664.7019 686.4333 446.6631 762.4874 643.6553 683.4293	5 6 2 2 2 2 2 2 3 3 2 2 3 3 2 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 2 2 2 2 3 3 2 2 2 3 3 2 2 2 2 3 3 2 2 2 2 3 3 2 2 2 2 3 3 2 2 2 2 2 3 3 2 2 2 2 3 3 2 2 2 2 3 3 3 2 2 2 2 3 3 3 2 2 2 2 3 3 3 2 2 2 2 3 3 3 2 2 2 2 3 3 3 2 2 2 2 3 3 3 2 2 2 2 3 3 3 2 2 2 2 3 3 3 2 2 2 2 3 3 3 2 2 2 2 3 3 3 2 2 2 2 2 3 3 3 2 2 2 2 2 2 3 3 3 2 2 2 2 2 2 2 3 3 3 2 2 2 2 2 2 2 2 2 2 3 3 3 2	81.73 86.71 52.47 59.68 68.39 98.36 106.7 58.12 63.7 52.45 106.9 57.38 41.55 43.33 41.25 35.64 93.92 106.3 66.32 92.7 92.6 66.06 79.12 56.92 102.5 79.96 97.98 82.35 94.36	2570.5193 2739.6294 828.4203 878.4902 953.5069 980.627 1026.6477 1056.5427 1075.6025 1157.7205 1169.7092 1239.7915 1265.7344 1285.8154 1376.8027 1393.8293 1462.9121 1495.8035 1562.9758 1563.8118 1580.866 1624.9697 1991.084 2056.2883 2228.2812 2284.4609 2570.5522 2729.678	-2.5 0.1 0.8 -1.2 -1.4 0.8 0.8 -0.1 -2.6 -0.2 0.9 -0.6 1 1.6 -1.9 0.3 3.5 -9.6 -1.8 1.2 2.1 2.7 2.8 0 -5 -0.8 -9 15.6 3.7	Y N N N N N N N N N N N N N N N N N N N	NM(+15.99)TVKQLSAKAEELLKKLLAKKA LGMESLKQLSAKAEELLKKLLAKKA GFKSMLF VEPKFLF ESEPGLPLL TAGLPLLALL FAGLPLLALL MTLPFLQHA NNVPKLTPPP SMLAKAALKLL AVPLLALLM(+15.99)TL VGGSLLAKAALKL LVAPAAAEVLAGGK MSLAKAALKLLK KLVAPAAAEVLAQP KLVAPAAAEVLAQP KLVAPAAAEVLAQP KLVAPAAAEVLANK PPESLLAKAALKLL NTELPFLQHALTL VVAGDPLDPKVLESL PTAPGSLLAAKALKLL PPTATAAAAFMKLFQ VVTGDPLDPKVLESL QPNKSMLAKAALKLL NAALKKGLFDQLDKAAAAF VGGTVLAKAALKLLAKAAPKH GLMELSKQLSAKAEELLKKL VGSGLLAKAALKLLAKKA VGSGLLAKAALKLLAKAAPVLADK	U ₂₀ -Mri1a U ₂₀ -Mri1a U ₁₀ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₁₀ -Mri1a U ₁₀ -Mri1c U ₁₀ -Mri1c U ₁₀ -Mri1c U ₁₀ -Mri1c U ₁₀ -Mri1c U ₁₀ -Mri1c U ₁₀ -Mri1a U ₁₀ -Mri1a U ₁₂ -Mri1a U ₁₂ -Mri1a U ₁₂ -Mri1a U ₁₂ -Mri1a U ₁₃ -Mri1a U ₁₂ -Mri1a U ₁₀ -Mri1c U ₁₃ -Mri1a U ₁₀ -Mri1c U ₁₀ -Mri1c U ₁₀ -Mri1a U ₁₀ -Mri1a
28728 30848 14112 18050 21865 37223 42020 17223 19971 14101 42126 16737 9229 9896 9104 6735 35076 41720 20914 34360 34296 20809 27433 16629 39500 27899 36795 29000 35335 41855	20.1 22 6.1 7.9 8.8 8.7 7.9 8.7 9.5 9.5 11.4 12.1 10.4 12.2 12.2 11.3 13 13 13 13 13 13 13 13 13 1	88 88 88 88 88 87	515.1099 457.6122 415.2178 440.2518 477.76 491.3212 514.3315 529.2786 538.8071 386.914 585.8624 620.9026 422.9192 429.6131 689.4073 697.9221 732.4659 748.9018 776.4336 782.9148 791.4424 542.6653 664.7019 686.4333 446.6631 762.4874 643.6553 683.4293 705.9445	5 6 2 2 2 2 2 2 3 3 2 2 2 3 3 2 2 2 2 2 2	81.73 86.71 52.47 59.68 68.39 98.36 106.7 58.12 63.7 52.45 106.9 57.38 41.55 43.33 41.25 35.64 93.92 106.3 66.32 92.7 92.6 66.06 79.12 56.92 102.5 79.96 97.98 82.35 94.36 106.4	2570.5193 2739.6294 828.4203 878.4902 953.5069 980.627 1026.6477 1056.5427 1075.6025 1157.7205 1169.7092 1239.7915 1265.7344 1285.8154 1376.8027 1393.8293 1462.9121 1495.8035 1562.9758 1563.8118 1580.866 1624.9697 1991.084 2056.2883 2228.2812 2284.4609 2570.5522 2729.678 2819.7251	-2.5 0.1 0.8 -1.2 -1.4 0.8 0.8 -0.1 -2.6 -0.2 0.9 -0.6 1 1.6 -1.9 0.3 3.5 -9.6 -1.8 1.2 2.1 2.7 2.8 0 -5 -0.8 -9 15.6 3.7 8.4	Y N N N N N N N N N N N N N N N N N N N	NM(+15.99)TVKQLSAKAEELLKKLLAKKA LGMESLKQLSAKAEELLKKLLAKKA GFKSMLF VEPKFLF ESEPGLPLL TAGLPLLALL FAGLPLLALL FAGLPLLALL MTLPFLQHA NNVPKLTPPP SMLAKAALKLL AVPLLALLM(+15.99)TL VGGSLLAKAALKL LVAPAAAEVLAGGK MSLAKAALKLLK KLVAPAAAEVLAGGK MSLAKAALKLLK KLVAPAAAEVLAQP KLVAPAAAEVLAQP KLVAPAAAEVLANK PPESLLAKAALKLL NTELPFLQHALTL VVAGDPLDPKVLESL PTAPGSLLAAKALKLL PTAPGSLLAAKALKLL NTELPFLQHALTL VVAGDPLDPKVLESL PTAPGSLLAAKALKLL NAALKKGLFDQLDKAAAAF VGGTVLAKAALKLLAKAAPKH GLMELSKQLSAKAEELLKKL VGSGLLAKAALKLLAKAALSGTQ	U ₂₀ -Mri1a U ₂₀ -Mri1a U ₁₀ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₁₀ -Mri1c U ₁₀ -Mri1c U ₁₀ -Mri1c U ₁₀ -Mri1c U ₁₀ -Mri1c U ₁₀ -Mri1c U ₁₀ -Mri1a U ₁₂ -Mri1a U ₁₀ -Mri1c U ₁₃ -Mri1a U ₁₀ -Mri1c U ₁₃ -Mri1a U ₁₀ -Mri1c U ₁₀ -Mri1c U ₁₀ -Mri1c U ₁₀ -Mri1c U ₁₀ -Mri1c U ₁₀ -Mri1c U ₁₀ -Mri1c
28728 30848 14112 18050 21865 37223 42020 17223 19971 14101 42126 16737 9229 9896 9104 6735 35076 41720 20914 34360 34296 20809 27433 16629 39500 27899 36795 29000 35335 41855 41848	20.1 22 6.1 7.9 8.8 8.7 7.9 8.7 9.5 9.5 11.4 12.1 10.4 12.2 12.2 12.2 11.3 13 13 13 13 13 13 13 13 13 1	88 88 88 88 88 87	515.1099 457.6122 415.2178 440.2518 477.76 491.3212 514.3315 529.2786 538.8071 386.914 585.8624 620.9026 422.9192 429.6131 689.4073 697.9221 732.4659 748.9018 776.4336 782.4961 782.9148 791.4424 542.6653 664.7019 686.4333 446.6631 762.4874 643.6553 683.4293 705.9445 712.1841	5 6 2 2 2 2 2 2 2 2 3 3 2 2 2 3 3 2 2 2 2	81.73 86.71 52.47 59.68 68.39 98.36 106.7 58.12 63.7 52.45 106.9 57.38 41.55 43.33 41.25 35.64 93.92 106.3 66.32 92.7 92.6 66.06 79.12 56.92 102.5 79.96 97.98 82.35 94.36 106.4 106.4	2570.5193 2739.6294 828.4203 878.4902 953.5069 980.627 1026.6477 1056.5427 1075.6025 1157.7205 1169.7092 1239.7915 1265.7344 1285.8154 1376.8027 1393.8293 1462.9121 1495.8035 1562.9758 1563.8118 1580.866 1624.9697 1991.084 2056.2883 2228.2812 2284.4609 2570.5522 2729.678 2819.7251 2844.7163	-2.5 0.1 0.8 -1.2 -1.4 0.8 0.8 -0.1 -2.6 -0.2 0.9 -0.6 1 1.6 -1.9 0.3 3.5 -9.6 -1.8 1.2 2.1 2.7 2.8 0 -5 -0.8 -5 -0.8 -9 15.6 3.7 8.4 -3.2	Y N N N N N N N N N N N N N N N N N N N	NM(+15.99)TVKQLSAKAEELLKKLLAKKA LGMESLKQLSAKAEELLKKLLAKKA GFKSMLF VEPKFLF ESEPGLPLL TAGLPLLALL FAGLPLLALL FAGLPLLALL MTLPFLQHA NNVPKLTPPP SMLAKAALKLL AVPLLALLM(+15.99)TL VGGSLLAKAALKL LVAPAAAEVLAGGK MSLAKAALKLLK KLVAPAAAEVLAQP KLVAPAAAEVLAQP KLVAPAAAEVLANK PPESLLAKAALKLL NTELPFLQHALTL VVAGDPLDPKVLESL PTAPGSLLAKAALKLL PTAPGSLLAKAALKLL NTELPFLQHALTL VVAGDPLDPKVLESL PTAPGSLLAAKALKLL NAALKKGLFDQLDKAAAAF VGGTVLAKAALKLLAKAAPKH GLMELSKQLSAKAEELLKKL VGGTVLAKAALKLLAKAAPKH SLAKAALKLLAKAAALF VGGTVLAKAALKLLKLVAPAAAEVLADK FLALVEAAAPAVLKLLKLAAKALLSGTQ NSAGSLLAKAALKLLKLVAPAAAEVLANK	U ₂₀ -Mri1a U ₂₀ -Mri1a U ₁₀ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₃ -Mri1a U ₁₀ -Mri1c U ₁₀ -Mri1a U ₁₂ -Mri1a U ₁₂ -Mri1a U ₁₂ -Mri1a U ₁₂ -Mri1a U ₁₂ -Mri1a U ₁₂ -Mri1a U ₁₃ -Mri1a U ₁₀ -Mri1c U ₁₃ -Mri1a U ₁₀ -Mri1c U ₁₀ -Mri1c

9528	7.9	87	457.8066	2	42.33	913.596	2.9	Ν	SLLAKAALK	U ₁₀ -Mri1c	
4700	7.9	87	468.2507	2	27.09	934.4872	-0.4	Ν	FAEALGRAT	CL24Contig3/4 1	
19762	7	87	470.7613	2	63.01	939.5065	1.7	N	KDALFLSF	U ₁₀ -Mri1b	
16960	7	87	493.7603	2	57.45	985.5055	0.6	N	MTLPFLQH	U ₃ -Mri1a	
21133	8.6	86	556.8315	2	66.84	1111.6489	-0.3	N	LDPKVLESLV	U12-Mri1a	
7976	8.6	86	599.8146	2	38.23	1197.6143	0.3	N	VSPDEVFLHR		
9669	12	86	625 3652	2	42 56	1248 719	-24	N	ΚΑΥΑΡΑΑΑΑΑΙΑΡΟ	U ₁₀ -Mri1a	
29551	94	86	627 3763	2	83.62	1252 7437	-4.5	N		Uno-Mri1a	
21810	11 1	86	677 4447	2	68 / 3	1352 8867	-8.7	N	RGSUAKAAIKU	U ₄₀ -Mri1c	
17006	10.2	80	601 96E9	2	E0 21	1352.8807	-0.7	IN NI			
1/090	10.5	00	699 2945	2	59.21	1307.7197	-1.9	IN NI		U3-IVIIIId	
14428	12.1	00	088.3845	2	55.00	1374.7542	0.2	IN N			
42242	12.9	86	/03.951/	2	107.1	1405.8909	-1.4	IN N	GVGSLLAGLPLLALL		
1/823	10.4	86	4/1.3065	3	58.93	1410.8962	1.2	N	LKDALAKLWKLL	U ₁₀ -Mri1b	
9271	13.7	86	479.9522	3	41.63	1436.835	-0.1	N	KLGAPAAAAAADKLG	U ₁₀ -Mri1a	
21210	11.2	86	485.2686	3	67	1452.7798	3	N	LDKAAAAFMKLFQ	U ₁₃ -Mri1a	
31887	12.1	86	727.4528	2	88.45	1452.9028	-8.1	N	QQGSLLAKAALKLL	U ₁₀ -Mri1c	
18109	12	86	494.6636	3	59.86	1480.9817	-8.5	N	RGSLLAKAALKLLK	U ₁₀ -Mri1c	
17123	12	86	745.9608	2	58.23	1489.9053	1.1	N	GFKSMLAKAALKLL	U ₁₀ -Mri1a	
39826	12	86	755.4489	2	103	1508.8748	5.7	N	CEHSLLAKAALKLL	U ₁₀ -Mri1c	
11693	13.7	86	782.9754	2	47.63	1563.9348	0.9	N	KLVAAPAAEVLANKLG	U ₁₀ -Mri1c	
42303	14.6	86	852.9577	2	107.2	1703.8982	1.6	Ν	TPPAEAESEPGLPLLAL	U₃-Mri1a	
9577	13.7	86	436.0295	4	44.44	1740.0872	1	Ν	ASKAEELLKKLLAKKA	U ₂₀ -Mri1a	
12014	14.6	86	595.0208	3	48.31	1782.0403	0.1	N	KLVAPAAAEVLANKLQF	U ₁₀ -Mri1c	
30604	17.1	86	676.3676	3	85.73	2026.092	-5.4	N	PQGAKKLGLFDGALMLAAPE	U ₁₃ -Mri1a	
19758	17.2	86	682,4457	3	63	2044,3135	0.9	N	ALKI I KI VAPAAAFVI AVVR	U ₁₀ -Mri1c	
31766	19	86	692 448	3	88.08	2074 324	-0.9	N	VGGSLLAKAALKI VAPAAA	U ₁₀ -Mri1c	
24415	18 1	86	420 6614	5	73 53	2098 2698	0.5	N			
/1021	22.2	86	977 1174	2	106.6	2628 2204	2.4	N		C124Contig2/4.1	
41301	23.3	80	1271 22	2	21 27	2028.3334	-3.4	N		UL Mri1c	
20522	21.4	00	1371.32	2	105.2	2740.0248	0.5	IN NI			
40948	24.9	86	948.2719	3	105.2	2841.7781	5.5	IN N			
41850	24.2	86	953.5998	3	106.4	2857.7441	11.7	N	DPSLLAKAALKLLKLVAPAAAEVLAWIKL	U ₁₀ -IVITI1C	
41872	24.2	86	957.2731	3	106.5	2868.7891	2.9	N	LEAQLAKAALKLLKLVAPAAAEVLAVVR	U ₁₀ -Mri1c	
41876	25.1	86	975.2721	3	106.5	2922.8108	-5.6	N	HTGSLLAKAALKLLKLVAAPAAEVLARVV	U ₁₀ -Mri1c	
41302	25	86	733.7189	4	105.6	2930.8411	1.8	N	VFGSLLAKAALKLLKLVAPAAAEVLAVVR	U ₁₀ -Mri1c	
41934	24.9	86	1479.415	2	106.6	2956.8052	3.5	N	DTAELLAKAALKLLKLVAPAAAEVLARVV	U ₁₀ -Mri1c	
27377	22.4	86	993.8811	3	79.03	2978.6091	4.2	N	FLEFLLLAAHKDQLDKAAAAFMKLFQ	U ₁₃ -Mri1a	
7395	6	86	393.2417	2	36.54	784.4694	-0.7	N	PKVLESL	U ₁₂ -Mri1a	
42021	8.5	85	511.3183	2	106.7	1020.6219	0.1	N	LPLGPDLALL		
38287	8.5	85	516.309	2	100.3	1030.6062	-2.7	N	EAGLFVVALL		
15348	9.3	85	596.8605	2	54.74	1191.7048	1.3	Y	AM(+15.99)LAKAALKLF	U ₁₀ -Mri1a	
6823	10.2	85	422.2529	3	37.82	1263.7373	-0.2	N	GFKSMLAKAALK	U ₁₀ -Mri1a	
21843	11.1	85	649.4099	2	68.36	1296.813	-6	Ν	VGSLLAKAALKLN	U10-Mri1c	
16713	10.2	85	670.3651	2	57.08	1338.7183	-2	Ν	LVHAEPTEALLF		
34059	11.1	85	685.8591	2	92.19	1369.7029	0.6	N	EAPGPSLGVHFLF		
21816	11.9	85	457.9498	3	68.32	1370.8318	-3	Ν	GVGSLLAKAALKML	U ₁₀ -Mri1c	
27313	11.9	85	489,6609	3	78.92	1465.9707	-6.6	N	GVTLAKAALKLLRL	U10-Mri1c	
12028	12.8	85	377,4889	4	48.59	1505,9292	-1.8	N	KIVAPAAAFVIARVV	U ₁₀ -Mri1c	
30036	13.6	85	768,4792	2	84.65	1534,9446	-0.4	N	PSGPGSLLAKAAIKII	U ₁₀ -Mri1c	
7503	12.7	85	770.4398	2	38	1538.8555	6.3	N	KAFVTPVAAAIFDII	U10-Mri1h	
8603	12.9	<u>85</u>	414 2706		43.1	1653 0552	-1	N	ΚΔΔΕΕΙΙΚΚΙΙΔΚΚΛ		
3/702	15 /	85 85	856 0/02	7	92 /6	1711 8620	1.0	N	Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο	CI 24Contig2/4 1	
10762	12 5.4	05	120 5101	1	62 01	1719 0164	1.0	N		Mri1a	
13/03	15.5	00	430.3121	4	03.01	1765 1552	1.0	IN NI			
27979	10.4	65	620.0702	2	80.07	1050.0070	0.3	IN N			
27035	10.1	85	020.0/03	3	79.51	1000.170.	-0.1	IN N			
2/888	17.8	85	645.394	3	79.94	1933.1724	-6.3	N	AAAAPAVKLLKAAAALADKLG	U ₁₀ -Mri1a	
11428	17	85	422.872	5	46.54	2109.3247	-0.4	N	KAGLGTKAEELLKKLLAKAK	U ₂₀ -Mri1a	
27723	20.3	85	760.1038	3	79.68	2277.2942	-2	N	ADEAVGVADPGVGSLLAKAALKLL	U ₁₀ -Mri1c	
28031	18.6	85	574.3477	4	80.17	2293.3818	-8.8	Ν	RGPAAVAKALLKLAAKALMSKW	U ₁₀ -Mri1a	
26385	19.5	85	518.114	5	77.05	2585.5188	5.8	Y	M(+15.99)ESLKQLSAKAEELLKKLLAKKA	U ₂₀ -Mri1a	
27895	24.6	85	945.2446	3	79.95	2832.7026	3.4	Ν	GFKSMLAKAALKLLKAVAPAAAAALLPTP	U ₁₀ -Mri1a	
39518	23.9	85	967.2623	3	102.5	2898.7898	-8.5	Ν	WARLAKAALKLLKLVAPAAAEVLANKLG	U ₁₀ -Mri1c	
32966	23	85	731.4402	4	89.81	2921.7349	-1	Ν	VGPVMESLKQLSAKAEELLKKLLAKKA	U ₂₀ -Mri1a	
41785	25.5	85	746.2218	4	106.4	2980.8528	1.8	Ν	PQAGSLLAKAALKLLKLVAPAAAEVLAVVR	U ₁₀ -Mri1c	
34368	23.9	85	997.2668	3	92.72	2988.7625	5.4	Ν	VAKDALAKLWKLLKAEVPTVAAALEDLL	U ₁₀ -Mri1b	
8098	7.6	85	408.2526	2	38.76	814.4912	-0.6	Ν	VGGSLLAKA	U ₁₀ -Mri1c	
11450	6.8	85	463.759	2	46.57	925.5021	1.4	N	TLPFLQHA	U ₃ -Mri1a	
14687	7.6	85	500,8125	2	53.57	999.6116	-1.2	N			
1555/	81	84	520 77/0	2	55.07	1039 5271	-1 8	N			
++	0.4	5	520.7743	14	55.07	10000.00/1	1.0				

6008	7.6	84	520.7833	2	32.98	1039.545	6.7	Ν	PFLQHALTN	U₃-Mri1a	
21722	9.2	84	576.8095	2	68.17	1151.5974	6.1	Ν	AHGALFPLTEP		
7954	8.4	84	400.2117	3	38.16	1197.6143	-0.8	Ν	VSPDEVFLHR		
29462	9.2	84	606.371	2	83.42	1210.7219	4.6	Ν	TVHCKLLAKKA	U ₂₀ -Mri1a	
17951	9.2	84	627.3392	2	59.62	1252.6638	0	Ν	PFLQHALTMVP	U₃-Mri1a	
22913	10.1	84	632.8466	2	70.82	1263.6824	-2.9	Ν	LPKVESLDGLHG		
17147	10	84	429.612	3	58	1285.8154	-0.9	Ν	KSMLAKAALKLL	U ₁₀ -Mri1a	
13049	10.9	84	674.8784	2	50.39	1347.7407	1.2	Ν	LGPLKKPVPCCPP	U ₆ -Mri1a	
17698	11.7	84	690.4166	2	58.72	1378.8184	0.2	Ν	LVAPAAAEVLALKN	U ₁₀ -Mri1c	
22987	10.9	84	463.294	3	71.71	1386.8711	-7.8	Ν	GSLLAAKALKLRF	U ₁₀ -Mri1c	
34658	10.9	84	722.9664	2	93.21	1443.9065	8.2	Ν	YVELLAKAALKLL	U ₁₀ -Mri1c	
23389	12.6	84	725.9722	2	71.75	1449.9282	1.2	Ν	PGVGSLLAKAALKLL	U ₁₀ -Mri1c	
33640	12.6	84	740.9648	2	91.31	1479.9136	1.1	Ν	PQGGSLLAKAALKVK	U ₁₀ -Mri1c	
32456	12.7	84	750.4554	2	89.03	1498.8904	4	Ν	QCAGSLLAKAALKLL	U ₁₀ -Mri1c	
33872	12.7	84	764.4526	2	92.31	1526.9031	-8.1	Ν	QDSGSLLAKAALKLL	U ₁₀ -Mri1c	
23109	12.6	84	530.9816	3	71.29	1589.9214	0.9	Ν	FGKSMLADLAALKLL	U ₁₀ -Mri1a	
30980	12.6	84	800.96	2	86.46	1599.9019	2.2	Ν	QNAESMLAKAALKLL	U ₁₀ -Mri1a	
25412	12.6	84	803.965	2	75.24	1605.9163	-0.5	Ν	YEVGSMLAKAALKLL	U ₁₀ -Mri1a	
16427	13.4	84	423.2667	4	57.16	1689.0374	0.2	Ν	KFGSMLAKAALKLLKA	U ₁₀ -Mri1a	
18457	14.2	84	572.6976	3	60.87	1715.0596	6.6	Ν	LLKLVAPAAAEVLLTPP	U ₁₀ -Mri1c	
42297	14.4	84	863.9498	2	107.2	1725.8823	1.6	Ν	PPTAEAESEFAAPLLAL		
11431	15.1	84	867.5523	2	46.54	1733.0925	-1.4	Ν	KLLKAVAAPAAAALALNK	U ₁₀ -Mri1a	
9583	13.5	84	581.0366	3	43.2	1740.0872	0.5	Ν	TGKAEELLKKLLAKKA	U ₂₀ -Mri1a	
21277	14.3	84	582.9808	3	67.19	1745.9233	-1.6	Ν	GLMESLKAGLSAKAEEL	U ₂₀ -Mri1a	
21284	13.4	84	873.9689	2	67.21	1745.9233	0	Ν	GLMESLKQLSAKAEEL	U ₂₀ -Mri1a	
37331	20.2	84	762.4918	3	98.57	2284.4609	-3.3	Ν	VGVASLAKAALLKLKLVAAPAALP	U ₁₀ -Mri1c	
42281	17.6	84	1146.147	2	107.5	2290.2866	-3.2	Y	LPLAVALLDVM(+15.99)TMLLALLPHM		
19559	19.4	84	772.5018	3	62.71	2314.4827	0.5	Ν	KAAALKLLKLVAPAAAEVLAVVR	U ₁₀ -Mri1c	
29230	19.3	84	643.6364	4	82.9	2570.5193	-1.1	Y	LM(+15.99)SNKQLSAKAEELLKKLLAKKA	U ₂₀ -Mri1a	
19643	21	84	861.2208	3	62.83	2580.6206	7.8	Ν	KAAALKLLKLVAPAAAEVLANKLKH	U ₁₀ -Mri1c	
37736	22.7	84	678.4332	4	99.33	2709.6995	1.6	Ν	VGGSLLAKAALKLLKLVAAPAAELKKH	U ₁₀ -Mri1c	
37465	23.4	84	678.6786	4	98.82	2710.7087	-8.5	Ν	VGGSLLAKVGVKLLKLVAPAAAEVLVPV	U ₁₀ -Mri1c	
27225	21.1	84	460.278	6	79.25	2755.6243	0	Y	GLM(+15.99)ESLKQLSAKAEELLKKLLAKKA	U ₂₀ -Mri1a	
32585	21	84	552.3301	5	89.48	2756.6162	-0.8	Ν	FGNESLKQLSAKAEELLKKLLAKKA	U ₂₀ -Mri1a	
41156	24.3	84	711.4554	4	105.4	2841.7781	5.1	Ν	VGSAVLAKAALKLLKLVAAPAAEVLAVKQ	U10-Mri1c	
34907	21.9	84	719.6818	4	93.64	2874.6726	8.8	Ν	PHAMESLKQLTGKAEELLKKLLAKKA	U ₂₀ -Mri1a	
27921	22.7	84	729.431	4	79.99	2913.6936	0.5	Ν	SSGLMETVKQLGTKAEELLKKLLAKKA	U ₂₀ -Mri1a	
16663	6.7	84	412.7832	2	56.98	823.5531	-1.6	Ν	AVPLLALK	U₃-Mri1a	
25442	7.5	84	428.2696	2	75.28	854.5225	2.4	Ν	SVLGALAKP		
17162	6.7	84	450.7353	2	57.77	899.4575	-1.6	Ν	FGKSMLAF	U ₁₀ -Mri1a	
25421	7.6	84	469.326	2	75.25	936.6371	0.3	Ν	VAPLLALLK	U₃-Mri1a	
41931	8.4	84	498.3095	2	106.6	994.6063	-1.8	Ν	GEGLPLLALL	U₃-Mri1a	
14825	7.4	83	507.2967	2	53.87	1012.5804	-1.6	Ν	EVLKPDLSL		
17815	8.3	83	515.2772	2	58.91	1028.5331	6.5	Ν	FLAFAGGFLS		
15957	7.4	83	518.289	2	55.78	1034.5647	-1.2	Ν	LDPKLSYSL	U ₁₂ -Mri1a	
12727	9.2	83	556.3411	2	49.81	1110.6648	2.5	Ν	PTVAAALEKVL	U ₁₀ -Mri1b	
12040	10	83	567.8474	2	48.61	1133.6807	-0.4	Ν	KLVAAPAALSPP	U ₁₀ -Mri1c	
42304	9.1	83	577.8641	2	107.2	1153.7144	-0.5	N	VAPLLALLMTL	U ₃ -Mri1a	
10118	9.9	83	590.8572	2	43.66	1179.6975	2.1	N	TPVAAALTARPL	U ₁₀ -Mri1b	
19098	10.8	83	620.8429	2	61.95	1239.6709	0.3	N	LPDSAAVDAVVLA		
17663	10.9	83	622.3666	2	58.66	1242.7295	-8.7	N	QGSGSLLAKAALK	U ₁₀ -Mri1c	
23062	10	83	632.8345	2	71.21	1263.6646	-8	N	LPDLKSLGHMGP		
25407	9.1	83	433.6109	13	75.49	1297.8123	-1	N	KDALAKLWKLL	U ₁₀ -Mri1b	
28740											
42234	10	83	435.9305	3	81.75	1304.7671	1.9	N	TACMKKLLAKAK		
25394	10 11.7	83 83	435.9305 668.4343	3	81.75 107.1	1304.7671 1334.8538	1.9 0.2	N N	TACMKKLLAKAK VGSGLLGLPLLALL	U ₃ -Mri1a	
28420	10 11.7 11.6	83 83 83	435.9305 668.4343 722.4649	3 2 2	81.75 107.1 75.21	1304.7671 1334.8538 1442.9224	1.9 0.2 -4.9	N N N	TACMKKLLAKAK VGSGLLGLPLLALL FVGSLLAAKALKLL	U ₃ -Mri1a U ₁₀ -Mri1c	
20420	10 11.7 11.6 10.8	83 83 83 83	435.9305 668.4343 722.4649 484.6205	3 2 2 3	81.75 107.1 75.21 82.01	1304.7671 1334.8538 1442.9224 1450.8506	1.9 0.2 -4.9 -7.4	N N N	TACMKKLLAKAK VGSGLLGLPLLALL FVGSLLAAKALKLL LEEATHKLLAKKA	U ₃ -Mri1a U ₁₀ -Mri1c U ₂₀ -Mri1a	
23266	10 11.7 11.6 10.8 10.8	83 83 83 83 83	435.9305 668.4343 722.4649 484.6205 486.9728	3 2 2 3 3 3	81.75 107.1 75.21 82.01 71.55	1304.7671 1334.8538 1442.9224 1450.8506 1457.897	1.9 0.2 -4.9 -7.4 -0.2	N N N N	TACMKKLLAKAK VGSGLLGLPLLALL FVGSLLAAKALKLL LEEATHKLLAKKA KNFELAKAALKLL	U ₃ -Mri1a U ₁₀ -Mri1c U ₂₀ -Mri1a U ₁₀ -Mri1a/U ₁₀ -Mri1c	
23266 36772	10 11.7 11.6 10.8 10.8 13.3	83 83 83 83 83 83 83	435.9305 668.4343 722.4649 484.6205 486.9728 762.9838	3 2 2 3 3 3 2	81.75 107.1 75.21 82.01 71.55 97.45	1304.7671 1334.8538 1442.9224 1450.8506 1457.897 1523.9399	1.9 0.2 -4.9 -7.4 -0.2 8.6	N N N N N	TACMKKLLAKAK VGSGLLGLPLLALL FVGSLLAAKALKLL LEEATHKLLAKKA KNFELAKAALKLL VGGSLLAKAALKLLGN	U ₃ -Mri1a U ₁₀ -Mri1c U ₂₀ -Mri1a U ₁₀ -Mri1a/U ₁₀ -Mri1c U ₁₀ -Mri1c	
23266 36772 9934	10 11.7 11.6 10.8 10.8 13.3 13.2	83 83 83 83 83 83 83 83	435.9305 668.4343 722.4649 484.6205 486.9728 762.9838 520.9619	3 2 2 3 3 3 2 3	81.75 107.1 75.21 82.01 71.55 97.45 43.51	1304.7671 1334.8538 1442.9224 1450.8506 1457.897 1523.9399 1559.8672	1.9 0.2 -4.9 -7.4 -0.2 8.6 -2.1	N N N N N N	TACMKKLLAKAK VGSGLLGLPLLALL FVGSLLAAKALKLL LEEATHKLLAKKA KNFELAKAALKLL VGGSLLAKAALKLLGN KAEVPTVAAALVHGTP	U ₃ -Mri1a U ₁₀ -Mri1c U ₂₀ -Mri1a U ₁₀ -Mri1a/U ₁₀ -Mri1c U ₁₀ -Mri1c U ₁₀ -Mri1b	
23266 36772 9934 24373	10 11.7 11.6 10.8 13.3 13.2 12.4	83 83 83 83 83 83 83 83 83 83	435.9305 668.4343 722.4649 484.6205 486.9728 762.9838 520.9619 795.9679	3 2 2 3 3 3 2 3 2 3 2	81.75 107.1 75.21 82.01 71.55 97.45 43.51 73.47	1304.7671 1334.8538 1442.9224 1450.8506 1457.897 1523.9399 1559.8672 1589.9214	1.9 0.2 -4.9 -7.4 -0.2 8.6 -2.1 -0.2		TACMKKLLAKAK VGSGLLGLPLLALL FVGSLLAAKALKLL LEEATHKLLAKKA KNFELAKAALKLL VGGSLLAKAALKLLGN KAEVPTVAAALVHGTP LGDFSMLAKAALKLL	U ₃ -Mri1a U ₁₀ -Mri1c U ₂₀ -Mri1a U ₁₀ -Mri1a/U ₁₀ -Mri1c U ₁₀ -Mri1c U ₁₀ -Mri1b U ₁₀ -Mri1a	
23266 36772 9934 24373 31264	10 11.7 11.6 10.8 13.3 13.2 12.4 12.5	83 83 83 83 83 83 83 83 83 83 83	435.9305 668.4343 722.4649 484.6205 486.9728 762.9838 520.9619 795.9678 534.9997	3 2 2 3 3 3 2 3 2 3 2 3	81.75 107.1 75.21 82.01 71.55 97.45 43.51 73.47 87.93	1304.7671 1334.8538 1442.9224 1450.8506 1457.897 1523.9399 1559.8672 1589.9214 1601.9724	1.9 0.2 -4.9 -7.4 -0.2 8.6 -2.1 -0.2 3.1	N N N N N N N N N	TACMKKLLAKAK VGSGLLGLPLLALL FVGSLLAAKALKLL LEEATHKLLAKKA KNFELAKAALKLL VGGSLLAKAALKLLGN KAEVPTVAAALVHGTP LGDFSMLAKAALKLL KMTKLACAKAALKLL	$U_{3}-Mri1a \\ U_{10}-Mri1c \\ U_{20}-Mri1a \\ U_{10}-Mri1a/U_{10}-Mri1c \\ U_{10}-Mri1c \\ U_{10}-Mri1b \\ U_{10}-Mri1a \\ U_{10}-Mri1a/U_{10}-Mri1c \\ U_{10}-Mri1c \\ U_{10}-Mrinc \\ U_{10}-Mr$	
23266 36772 9934 24373 31264 17742	10 11.7 11.6 10.8 13.3 13.2 12.4 12.5 13.2	83 83 83 83 83 83 83 83 83 83 83 83	435.9305 668.4343 722.4649 484.6205 486.9728 762.9838 520.9619 795.9678 534.9997 535.9467	3 2 2 3 3 2 3 2 3 2 3 3 3	81.75 107.1 75.21 82.01 71.55 97.45 43.51 73.47 87.93 58.79	1304.7671 1334.8538 1442.9224 1450.8506 1457.897 1523.9399 1559.8672 1589.9214 1601.9724 1604.8157	1.9 0.2 -4.9 -7.4 -0.2 8.6 -2.1 -0.2 3.1 1.6	N N N N N N N N N N	TACMKKLLAKAK VGSGLLGLPLLALL FVGSLLAAKALKLL LEEATHKLLAKKA KNFELAKAALKLL VGGSLLAKAALKLLGN KAEVPTVAAALVHGTP LGDFSMLAKAALKLL KMTKLACAKAALKLL SSAHLGLSDALGHLDL	U ₃ -Mri1a U ₁₀ -Mri1c U ₂₀ -Mri1a U ₁₀ -Mri1a/U ₁₀ -Mri1c U ₁₀ -Mri1c U ₁₀ -Mri1b U ₁₀ -Mri1a U ₁₀ -Mri1a/U ₁₀ -Mri1c	
23266 36772 9934 24373 31264 17742 31480	10 11.7 11.6 10.8 13.3 13.2 12.4 12.5 13.2 12.4	83 83 83 83 83 83 83 83 83 83 83 83	435.9305 668.4343 722.4649 484.6205 486.9728 762.9838 520.9619 795.9678 534.9997 535.9467 809.9659	3 2 2 3 3 2 3 2 3 2 3 3 2 3 2 2 3 2 2	81.75 107.1 75.21 82.01 71.55 97.45 43.51 73.47 87.93 58.79 87.3	1304.7671 1334.8538 1442.9224 1450.8506 1457.897 1523.9399 1559.8672 1589.9214 1601.9724 1604.8157 1617.9197	1.9 0.2 -4.9 -7.4 -0.2 8.6 -2.1 -0.2 3.1 1.6 -1.4	N N N N N N N N N Y	TACMKKLLAKAK VGSGLLGLPLLALL FVGSLLAAKALKLL LEEATHKLLAKKA KNFELAKAALKLL VGGSLLAKAALKLLGN KAEVPTVAAALVHGTP LGDFSMLAKAALKLL KMTKLACAKAALKLL SSAHLGLSDALGHLDL M(+15.99)AELSMLAKAALKLL	$U_{3}-Mri1a \\ U_{10}-Mri1c \\ U_{20}-Mri1a \\ U_{10}-Mri1a/U_{10}-Mri1c \\ U_{10}-Mri1c \\ U_{10}-Mri1b \\ U_{10}-Mri1b \\ U_{10}-Mri1a \\ U_{10}-Mrina \\ U_{10}-$	
23266 36772 9934 24373 31264 17742 31480 13816	10 11.7 11.6 10.8 13.3 13.2 12.4 12.5 13.2 12.4 12.5	83 83 83 83 83 83 83 83 83 83 83 83 83 8	435.9305 668.4343 722.4649 484.6205 486.9728 762.9838 520.9619 795.9678 534.9997 535.9467 809.9659 405.5071	3 2 2 3 3 2 3 2 3 3 2 3 3 2 4	81.75 107.1 75.21 82.01 71.55 97.45 43.51 73.47 87.93 58.79 87.3 54.79	1304.7671 1334.8538 1442.9224 1450.8506 1457.897 1523.9399 1559.8672 1589.9214 1601.9724 1604.8157 1617.9197 1618.0002	1.9 0.2 -4.9 -7.4 -0.2 8.6 -2.1 -0.2 3.1 1.6 -1.4 -0.5	N N N N N N N N Y Y	TACMKKLLAKAK VGSGLLGLPLLALL FVGSLLAAKALKLL LEEATHKLLAKKA KNFELAKAALKLL VGGSLLAKAALKLLGN KAEVPTVAAALVHGTP LGDFSMLAKAALKLL KMTKLACAKAALKLL SSAHLGLSDALGHLDL M(+15.99)AELSMLAKAALKLL KGFSMLAKAALKLLK	$U_{3}-Mri1a \\ U_{10}-Mri1c \\ U_{20}-Mri1a \\ U_{10}-Mri1a/U_{10}-Mri1c \\ U_{10}-Mri1c \\ U_{10}-Mri1b \\ U_{10}-Mri1b \\ U_{10}-Mri1a \\ U_{10}-Mrina \\ U_{10}-$	
23266 36772 9934 24373 31264 17742 31480 13816 27943	10 11.7 11.6 10.8 13.3 13.2 12.4 12.5 13.2 12.4 12.5 13.2 12.4 12.5	83 83 83 83 83 83 83 83 83 83 83 83 83 8	435.9305 668.4343 722.4649 484.6205 486.9728 762.9838 520.9619 795.9678 534.9997 535.9467 809.9659 405.5071 608.7231	3 2 2 3 3 2 3 2 3 2 3 3 2 3 3 2 4 3 3	81.75 107.1 75.21 82.01 71.55 97.45 43.51 73.47 87.93 58.79 87.3 54.77 80.02	1304.7671 1334.8538 1442.9224 1450.8506 1457.897 1523.9399 1559.8672 1589.9214 1601.9724 1604.8157 1617.9197 1618.0002 1823.1494	1.9 0.2 -4.9 -7.4 -0.2 8.6 -2.1 -0.2 3.1 1.6 -1.4 -0.5 -1.4	N N <t< td=""><td>TACMKKLLAKAK VGSGLLGLPLLALL FVGSLLAAKALKLL LEEATHKLLAKKA KNFELAKAALKLL VGGSLLAKAALKLLGN KAEVPTVAAALVHGTP LGDFSMLAKAALKLL KMTKLACAKAALKLL SSAHLGLSDALGHLDL M(+15.99)AELSMLAKAALKLLK SKAVSLLVLGKAGLLLE</td><td>U₃-Mri1a U₁₀-Mri1c U₂₀-Mri1a U₁₀-Mri1a/U₁₀-Mri1c U₁₀-Mri1b U₁₀-Mri1b U₁₀-Mri1a U₁₀-Mri1a U₁₀-Mri1a</td></t<>	TACMKKLLAKAK VGSGLLGLPLLALL FVGSLLAAKALKLL LEEATHKLLAKKA KNFELAKAALKLL VGGSLLAKAALKLLGN KAEVPTVAAALVHGTP LGDFSMLAKAALKLL KMTKLACAKAALKLL SSAHLGLSDALGHLDL M(+15.99)AELSMLAKAALKLLK SKAVSLLVLGKAGLLLE	U ₃ -Mri1a U ₁₀ -Mri1c U ₂₀ -Mri1a U ₁₀ -Mri1a/U ₁₀ -Mri1c U ₁₀ -Mri1b U ₁₀ -Mri1b U ₁₀ -Mri1a U ₁₀ -Mri1a U ₁₀ -Mri1a	
23266 36772 9934 24373 31264 17742 31480 13816 27943 41998	10 11.7 11.6 10.8 10.8 13.3 13.2 12.4 12.5 13.2 12.4 12.5 13.2 12.4 12.5 13.2 12.4 12.5 13.2 12.4 12.5 13.2 12.4 12.5 14.2	83 83 83 83 83 83 83 83 83 83 83 83 83 8	435.9305 668.4343 722.4649 484.6205 486.9728 762.9838 520.9619 795.9678 534.9997 535.9467 809.9659 405.5071 608.7231 924.5468	3 2 2 3 3 2 3 3 2 3 3 2 3 3 2 4 3 2 4 3 2 2	81.75 107.1 75.21 82.01 71.55 97.45 43.51 73.47 87.93 58.79 87.3 54.77 80.02 106.7	1304.7671 1334.8538 1442.9224 1450.8506 1457.897 1523.9399 1559.8672 1589.9214 1601.9724 1604.8157 1617.9197 1618.0002 1823.1494 1847.0742	1.9 0.2 -4.9 -7.4 -0.2 8.6 -2.1 -0.2 3.1 1.6 -1.4 -0.5 -1.1 2.6	N N	TACMKKLLAKAK VGSGLLGLPLLALL FVGSLLAAKALKLL LEEATHKLLAKKA KNFELAKAALKLL VGGSLLAKAALKLLGN KAEVPTVAAALVHGTP LGDFSMLAKAALKLL KMTKLACAKAALKLL SSAHLGLSDALGHLDL M(+15.99)AELSMLAKAALKLL KGFSMLAKAALKLL KGFSMLAKAALKLL VGSLUVLGKAGLLLE LPGLLALLMTLPFLQHA	U ₃ -Mri1a U ₁₀ -Mri1c U ₂₀ -Mri1a U ₁₀ -Mri1a/U ₁₀ -Mri1c U ₁₀ -Mri1b U ₁₀ -Mri1b U ₁₀ -Mri1a U ₁₀ -Mri1a U ₁₀ -Mri1a U ₁₀ -Mri1a U ₁₀ -Mri1a	

28253	16.6	83	539.0842	4	80.69	2152.2996	3.7	Ν	GFKSFPAKAALKLLAKAVRH	U ₁₀ -Mri1a	
38678	20.8	83	816.4318	3	101	2446.2703	1.3	Ν	TAEATAEALAKALAEAFAEALGRTA	CL24Contig3/4 1	
28783	19	83	429.2603	6	81.84	2569.5205	-0.8	N	DVPKQYVSAKAEELLKKLLAKKA	U ₂₀ -Mri1a	
38061	23.2	83	678.6885	4	99.91	2710.7087	5.9	N	VGGSLLAKVGVKLLKLVAPAAAEVLVVP	U ₁₀ -Mri1c	
27854	22.3	83	705.1473	4	79.89	2816.562	-0.7	N	OPGAKKDKLPDKYGLAATAAAAFMKLL	U ₁₃ -Mri1a	
37589	23.3	83	565.9295	5	99.06	2824.6135	-0.9	N	VGGSLLAKAALKLLKLVAAPAAEVEDMF	U ₁₀ -Mri1c	
34210	21.6	83	710 9187	4	92.7	2839 6567	-3.9	N		U ₂₀ -Mri1a	
35507	21.0	83	725 9533	1	9/ 79	2899 7837	0.2	N			
40026	24.0	03	723.3333	4	105	2035.7037	0.2	N			
40930	23.2	03	1007.000	4	105	2947.8538	4.0	IN NI			
41910	25	83	1067.006	3	106.5	3197.988	2.2	IN N			
41952	26.7	83	1081.687	3	106.6	3242.0508	-3./	N	KYGSLLAKAALKLIKLVAPAAAEVLAVLPVVL	U ₁₀ -Mri1c	
14986	6.6	83	486.7695	2	54.17	971.5228	1.7	N	PFLQHALF	U₃-Mri1a	
8881	7.4	82	517.7811	2	40.77	1033.5479	-0.2	Y	GLM(+15.99)ESLKQL	U ₂₀ -Mri1a	
7269	7.4	82	520.288	2	36.02	1038.5498	11.1	N	PFLQHALVD	U₃-Mri1a	
15819	7.4	82	528.3515	2	55.55	1054.6902	-1.6	N	ALAKLWKLL	U10-Mri1b	
23022	8.2	82	555.8135	2	71.11	1109.6121	0.3	N	LGKDALFLSF		
9114	9.8	82	567.8453	2	41.27	1133.6809	-4.2	N	LAVKAPAATVPP		
6037	10.7	82	570.3257	2	32.02	1138.6345	2	N	LGAPAAAAALADK	U ₁₀ -Mri1a	
11356	10.6	82	582.3441	2	46.42	1162.6709	2.4	N	LGPAAAAALALQP	U ₁₀ -Mri1c	
5412	9	82	390,5676	3	29.86	1168,6816	-0.5	N	I DPKALKSLOG	U ₁₂ -Mri1a	
25095	٥٥	82	448 2756	3	74 71	13/1 8167	-8.6	N		U ₂₂ -Mri1a	
11050	0.0	02	440.2750	2	10 17	12/1 022	-0.0	N		U ₂₀ -Mri1a	
11956	9.9	02	440.2011	2	40.17	1341.025	-1 1 0	IN N		U ₂₀ -IVIIIId	
11432	10.6	82	081.8857	2	40.54	1301.7554	1.2	IN N		11 . 64.:4 -	
21108	9.8	82	692.8741	2	66.78	1383.7219	8.5	N	MILPFLQHALDV	U ₃ -IVIrI1a	
18397	9.9	82	693.3692	2	61.76	1384.7173	4.8	N	MTLPFLQHALTN	U ₃ -Mri1a	
33380	11.5	82	698.4228	2	90.74	1394.8318	-0.5	N	SAPCPLAKAALKLL	U ₁₀ -Mri1a/U ₁₀ -Mri1c	
29747	10.6	82	484.9543	3	84.04	1451.8357	3.6	N	MTFACKKLLAKKA	U ₂₀ -Mri1a	
31494	12.3	82	735.4512	2	89.27	1468.8977	-6.6	N	QGSGSLLAKAALKLL	U ₁₀ -Mri1c	
22556	10.7	82	749.4172	2	70.09	1496.8062	9.2	N	PFLQHALTMLLDV	U ₃ -Mri1a	
13997	12.3	82	507.6566	3	52.26	1519.9448	2	Ν	KLVAPAAAELLAVVR	U ₁₀ -Mri1c	
8754	9.9	82	510.9321	3	40.43	1529.7725	1.3	Ν	LWEEDDKEVLVR		
24540	11.5	82	514.645	3	73.74	1540.9089	2.7	N	GLRSALAKLEGKLW	U ₁₀ -Mri1b	
31517	11.4	82	784.9762	2	87.38	1567.9448	-4.4	N	OAAKDALAKLWKLL	U10-Mri1b	
26223	13.1	82	528 0037	3	76.7	1580 9978	-53	N	OAGGSUAKAALKUK	U ₁₀ -Mri1c	
20225	10.1	02	520.0057	5	,	1000.0070	5.5				
37670	13 1	82	796 5092	2	99.2	1591 0183	-91	N	ΝΚΙ GLI ΚΙ ΔΔΚΔΙ ΔΔΡ	Un-Mri1a/Un-Mri1c	
37670	13.1	82 82	796.5092	2	99.2 64.15	1591.0183	-9.1 9.7	N		U ₁₀ -Mri1a/U ₁₀ -Mri1c	
37670 20117 21147	13.1 11.5	82 82	796.5092 802.3663	2	99.2 64.15	1591.0183 1602.7026	-9.1 9.7	N Y	NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV	U ₁₀ -Mri1a/U ₁₀ -Mri1c	
37670 20117 21147	13.1 11.5 13.1	82 82 82	796.5092 802.3663 579.0104	2 2 3	99.2 64.15 67.55	1591.0183 1602.7026 1734.0112	-9.1 9.7 -0.9	N Y N	NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK	U ₁₀ -Mri1a/U ₁₀ -Mri1c U ₁₀ -Mri1a	
37670 20117 21147 36271	13.1 11.5 13.1 14.8	82 82 82 82 82	796.5092 802.3663 579.0104 874.0851	2 2 3 2	99.2 64.15 67.55 96.32	1591.0183 1602.7026 1734.0112 1746.1494	-9.1 9.7 -0.9 3.6	N Y N	NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA	U ₁₀ -Mri1a/U ₁₀ -Mri1c U ₁₀ -Mri1a U ₁₀ -Mri1a/U ₁₀ -Mri1c	
37670 20117 21147 36271 41995	13.1 11.5 13.1 14.8 14	82 82 82 82 82 82	796.5092 802.3663 579.0104 874.0851 616.6993	2 2 3 2 3	99.2 64.15 67.55 96.32 106.7	1591.0183 1602.7026 1734.0112 1746.1494 1847.0742	-9.1 9.7 -0.9 3.6 1	N Y N N	NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA	U ₁₀ -Mri1a/U ₁₀ -Mri1c U ₁₀ -Mri1a U ₁₀ -Mri1a/U ₁₀ -Mri1c U ₃ -Mri1a	
37670 20117 21147 36271 41995 36498	13.1 11.5 13.1 14.8 14 16.4	82 82 82 82 82 82 82	796.5092 802.3663 579.0104 874.0851 616.6993 993.6407	2 2 3 2 3 2 2 2	99.2 64.15 67.55 96.32 106.7 96.85	1591.0183 1602.7026 1734.0112 1746.1494 1847.0742 1985.2764	-9.1 9.7 -0.9 3.6 1 -4.8	N Y N N N	NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA PAAAVLKLLKLAAKALLPQG	U ₁₀ -Mri1a/U ₁₀ -Mri1c U ₁₀ -Mri1a U ₁₀ -Mri1a/U ₁₀ -Mri1c U ₃ -Mri1a U ₁₀ -Mri1a/U ₁₀ -Mri1c	
37670 20117 21147 36271 41995 36498 26505	13.1 11.5 13.1 14.8 14 16.4 17.2	82 82 82 82 82 82 82 82 82	796.5092 802.3663 579.0104 874.0851 616.6993 993.6407 678.4222	2 2 3 2 3 2 3 2 3	99.2 64.15 67.55 96.32 106.7 96.85 77.22	1591.0183 1602.7026 1734.0112 1746.1494 1847.0742 1985.2764 2032.2407	-9.1 9.7 -0.9 3.6 1 -4.8 2.1	N Y N N N N	NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA PAAAVLKLLKLAAKALLPQG VGGSLLKLVAPAAAEVLARVV	U ₁₀ -Mri1a/U ₁₀ -Mri1c U ₁₀ -Mri1a U ₁₀ -Mri1a/U ₁₀ -Mri1c U ₃ -Mri1a U ₁₀ -Mri1a/U ₁₀ -Mri1c U ₁₀ -Mri1c	
37670 20117 21147 36271 41995 36498 26505 12035	$ \begin{array}{r} 13.1 \\ 11.5 \\ 13.1 \\ 14.8 \\ 14 \\ 16.4 \\ 17.2 \\ 16.4 \\ \end{array} $	82 82 82 82 82 82 82 82 82 82	796.5092 802.3663 579.0104 874.0851 616.6993 993.6407 678.4222 683.746	2 2 3 2 3 2 3 3 3 3	99.2 64.15 67.55 96.32 106.7 96.85 77.22 48.61	1591.0183 1602.7026 1734.0112 1746.1494 1847.0742 1985.2764 2032.2407 2048.2034	-9.1 9.7 -0.9 3.6 1 -4.8 2.1 6.2	N Y N N N N N Z	NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA PAAAVLKLLKLAAKALLPQG VGGSLLKLVAPAAAEVLARVV KLVAPAAAEVLANKLFVPPT	U ₁₀ -Mri1a/U ₁₀ -Mri1c U ₁₀ -Mri1a U ₁₀ -Mri1a/U ₁₀ -Mri1c U ₃ -Mri1a U ₁₀ -Mri1a/U ₁₀ -Mri1c U ₁₀ -Mri1c U ₁₀ -Mri1c	
37670 20117 21147 36271 41995 36498 26505 12035 37671	13.1 11.5 13.1 14.8 14 16.4 17.2 16.4 17.2	82 82 82 82 82 82 82 82 82 82 82	796.5092 802.3663 579.0104 874.0851 616.6993 993.6407 678.4222 683.746 686.4356	2 2 3 2 3 2 3 3 3 3 3	99.2 64.15 67.55 96.32 106.7 96.85 77.22 48.61 99.2	1591.0183 1602.7026 1734.0112 1746.1494 1847.0742 1985.2764 2032.2407 2048.2034 2056.2883	-9.1 9.7 -0.9 3.6 1 -4.8 2.1 6.2 -1.6	N Y N N N N N N	NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA PAAAVLKLLKLAAKALLPQG VGGSLLKLVAPAAAEVLARVV KLVAPAAAEVLANKLFVPPT AAPAVVRVALKLAAKALLPGQ	U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1a/U10-Mri1c	
37670 20117 21147 36271 41995 36498 26505 12035 37671 37925	13.111.513.114.81416.417.216.417.217.9	82 82 82 82 82 82 82 82 82 82 82 82	796.5092 802.3663 579.0104 874.0851 616.6993 993.6407 678.4222 683.746 686.4356 686.451	2 3 2 3 2 3 3 3 3 3 3 3	99.2 64.15 67.55 96.32 106.7 96.85 77.22 48.61 99.2 99.67	1591.0183 1602.7026 1734.0112 1746.1494 1847.0742 1985.2764 2032.2407 2048.2034 2056.2883 2056.3135	-9.1 9.7 -0.9 3.6 1 -4.8 2.1 6.2 -1.6 8.6	N Y N N N N N N	NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA PAAAVLKLLKLAAKALLPQG VGGSLLKLVAPAAAEVLARVV KLVAPAAAEVLANKLFVPPT AAPAVVRVALKLAAKALLPGQ APAAVLKALLKLAAKALVGAAP	U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c	
37670 20117 21147 36271 41995 36498 26505 12035 37671 37925 30434	13.1 11.5 13.1 14.8 14 16.4 17.2 16.4 17.2 17.9 16.5	82 82 82 82 82 82 82 82 82 82 82 82 82	796.5092 802.3663 579.0104 874.0851 616.6993 993.6407 678.4222 683.746 686.4356 686.451 699.3937	2 3 2 3 2 3 3 3 3 3 3 3 3 3	99.2 64.15 67.55 96.32 106.7 96.85 77.22 48.61 99.2 99.67 85.4	1591.0183 1602.7026 1734.0112 1746.1494 1847.0742 1985.2764 2032.2407 2048.2034 2056.2883 2056.3135 2095.1423	-9.1 9.7 -0.9 3.6 1 -4.8 2.1 6.2 -1.6 8.6 8	N Y N N N N N N N N N N N N N N N N	NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA PAAAVLKLLK VGGSLLKLVAPAAAEVLARVV KLVAPAAAEVLANKLFVPPT AAPAVVRVALKLAAKALLPGQ APAAVLKALKLAAKALLPGQ PQGAKKLGLFDQLDKAAAPQ	U ₁₀ -Mri1a/U ₁₀ -Mri1c U ₁₀ -Mri1a/U ₁₀ -Mri1c U ₁₀ -Mri1a/U ₁₀ -Mri1c U ₁₀ -Mri1a/U ₁₀ -Mri1c U ₁₀ -Mri1c U ₁₀ -Mri1c U ₁₀ -Mri1a/U ₁₀ -Mri1c U ₁₀ -Mri1a/U ₁₀ -Mri1c U ₁₀ -Mri1a/U ₁₀ -Mri1c	
37670 20117 21147 36271 41995 36498 26505 12035 37671 37925 30434 28430	13.111.513.114.81416.417.216.417.916.517.3	82 82 82 82 82 82 82 82 82 82 82 82 82 8	796.5092 802.3663 579.0104 874.0851 616.6993 993.6407 678.4222 683.746 686.4356 686.451 699.3937 538.8259	2 2 3 2 3 3 3 3 3 3 3 4	99.2 64.15 67.55 96.32 106.7 96.85 77.22 48.61 99.2 99.67 85.4 81.07	1591.0183 1602.7026 1734.0112 1746.1494 1847.0742 1985.2764 2032.2407 2048.2034 2056.2883 2056.3135 2095.1423 2151.2964	-9.1 9.7 -0.9 3.6 1 -4.8 2.1 6.2 -1.6 8.6 8 -10	N N N N N N N N N N N	NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA PAAAVLKLLK VGGSLLKLVAPAAAEVLARVV KLVAPAAAEVLANKLFVPPT AAPAVVRVALKLAAKALLPGQ APAAVLKALLKLAAKALLPGQ APAAVLKALKLAAKALLPGQ APAAVLKALKLAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVAKLLAKLAAKALMSKW	U ₁₀ -Mri1a/U ₁₀ -Mri1c U ₁₀ -Mri1a/U ₁₀ -Mri1c U ₁₀ -Mri1a/U ₁₀ -Mri1c U ₁₀ -Mri1a/U ₁₀ -Mri1c U ₁₀ -Mri1c U ₁₀ -Mri1c U ₁₀ -Mri1a/U ₁₀ -Mri1c U ₁₀ -Mri1a/U ₁₀ -Mri1c U ₁₃ -Mri1a U ₁₀ -Mri1a	
37670 20117 21147 36271 41995 36498 26505 12035 37671 37925 30434 28430 37233	13.1 11.5 13.1 14.8 14 16.4 17.2 16.4 17.2 17.9 16.5 17.3 18.9	82 82 82 82 82 82 82 82 82 82 82 82 82 8	796.5092 802.3663 579.0104 874.0851 616.6993 993.6407 678.4222 683.746 686.4356 686.451 699.3937 538.8259 729.4624	2 2 3 2 3 3 3 3 3 3 3 3 4 3	99.2 64.15 67.55 96.32 106.7 96.85 77.22 48.61 99.2 99.67 85.4 81.07 98.38	1591.0183 1602.7026 1734.0112 1746.1494 1847.0742 1985.2764 2032.2407 2048.2034 2056.2883 2056.3135 2095.1423 2151.2964 2185.356	-9.1 9.7 -0.9 3.6 1 -4.8 2.1 6.2 -1.6 8.6 8 -10 4.4	N N N N N N N N N N N N N	NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA PAAAVLKLLK VGGSLLKLVAPAAAEVLARVV KLVAPAAAEVLANKLFVPPT AAPAVVRVALKLAAKALLPQQ APAAVLKALLKLAAKALLPQQ APAAVLKALKLAAKALLPQQ APAAVLKALKLAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVAKLLAKLAAKALMSKW EAVAGPVVKLLKLAAKALVGAPA	U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1a U10-Mri1a/U10-Mri1c	
37670 20117 21147 36271 41995 36498 26505 12035 37671 37925 30434 28430 37233 40396	13.1 11.5 13.1 14.8 14 16.4 17.2 16.4 17.2 16.5 17.3 18.9 20.6	82 82 82 82 82 82 82 82 82 82 82 82 82 8	796.5092 802.3663 579.0104 874.0851 616.6993 993.6407 678.4222 683.746 686.4356 686.451 699.3937 538.8259 729.4624 762.4864	2 2 3 2 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3	99.2 64.15 67.55 96.32 106.7 96.85 77.22 48.61 99.2 99.67 85.4 81.07 98.38 104	1591.0183 1602.7026 1734.0112 1746.1494 1847.0742 1985.2764 2032.2407 2048.2034 2056.2883 2056.3135 2095.1423 2151.2964 2185.356 2284.4246	-9.1 9.7 -0.9 3.6 1 -4.8 2.1 6.2 -1.6 8.6 8 -10 4.4 5.6	N N N N N N N N N N N N N N	NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA PAAAVLKLLK VGGSLLKLVAPAAAEVLARVV KLVAPAAAEVLANKLFVPPT AAPAVVRVALKLAAKALLPGQ APAAVLKALLKLAAKALLPGQ APAAVLKALLKLAAKALLPGQ APAAVLKALLKLAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVAKLLAKLAAKALWGAPA VGVASLAKAALKLVAAVAPAAALP	U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c	
37670 20117 21147 36271 41995 36498 26505 12035 37671 37925 30434 28430 37233 40396 32591	13.1 11.5 13.1 14.8 14 16.4 17.2 16.4 17.2 16.5 17.3 18.9 20.6 16.4	82 82 82 82 82 82 82 82 82 82 82 82 82 8	796.5092 802.3663 579.0104 874.0851 616.6993 993.6407 678.4222 683.746 686.4356 686.451 699.3937 538.8259 729.4624 762.4864 596.5857	2 3 2 3 3 3 3 3 3 3 4 3 3 4 3 4 3 4	99.2 64.15 67.55 96.32 106.7 96.85 77.22 48.61 99.2 99.67 85.4 81.07 98.38 104 89.24	1591.0183 1602.7026 1734.0112 1746.1494 1847.0742 1985.2764 2032.2407 2048.2034 2056.2883 2056.3135 2095.1423 2151.2964 2185.356 2284.4246 2382.3027	-9.1 9.7 -0.9 3.6 1 -4.8 2.1 6.2 -1.6 8.6 8 -10 4.4 5.6 4.6	N Y N N N N N N N N N N N Y	NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA PAAAVLKLLKLAAKALLPQG VGGSLLKLVAPAAAEVLARVV KLVAPAAAEVLANKLFVPPT AAPAVVRVALKLAAKALLPGQ APAAVLKALKLAAKALLPGQ APAAVLKLLKLAAKALLVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVAKLLAKLAAKALVGAPA VGVASLAKAALKLAAKALVGAPA VGVASLAKAALKLLVAAVAPAAALP M(+15.99)LRTRKQLDKAAAAFMKLFQ	U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1a U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c	
37670 20117 21147 36271 41995 36498 26505 12035 37671 37925 30434 28430 37233 40396 32591 28659	13.1 11.5 13.1 14.8 14 16.4 17.2 16.4 17.2 17.9 16.5 17.3 18.9 20.6 16.4 19.7	82 82 82 82 82 82 82 82 82 82 82 82 82 8	796.5092 802.3663 579.0104 874.0851 616.6993 993.6407 678.4222 683.746 686.4356 686.451 699.3937 538.8259 729.4624 762.4864 596.5857 528.5303	2 3 2 3 2 3 3 3 3 3 3 3 4 3 4 5	99.2 64.15 67.55 96.32 106.7 96.85 77.22 48.61 99.2 99.67 85.4 81.07 98.38 104 89.24 81.57	1591.0183 1602.7026 1734.0112 1746.1494 1847.0742 1985.2764 2032.2407 2048.2034 2056.2883 2056.3135 2095.1423 2151.2964 2185.356 2284.4246 2382.3027 2637.6267	-9.1 9.7 -0.9 3.6 1 -4.8 2.1 6.2 -1.6 8.6 8 -10 4.4 5.6 4.6 -4.4	N Y N	NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA PAAAVLKLLKAAKALLPQG VGGSLLKLVAPAAAEVLARVV KLVAPAAAEVLANKLFVPPT AAPAVVRVALKLAAKALLPGQ APAAVLKALLKLAAKALLVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVAKLLAKLAAKALVGAPA VGVASLAKAALKLLVAAVAPAAALP M(+15.99)LRTRKQLDKAAAAFMKLFQ QLKSARTLSAKAFELLKKLLAKKA	U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a	
37670 20117 21147 36271 41995 36498 26505 12035 37671 37925 30434 28430 37233 40396 32591 28659 25077	13.1 11.5 13.1 14.8 14 16.4 17.2 16.4 17.2 17.9 16.5 17.3 18.9 20.6 16.4 19.7 19.7	82 82 82 82 82 82 82 82 82 82 82 82 82 8	796.5092 802.3663 579.0104 874.0851 616.6993 993.6407 678.4222 683.746 686.4356 686.451 699.3937 538.8259 729.4624 762.4864 596.5857 528.5303 537.5293	2 3 2 3 3 3 3 3 3 3 3 3 4 3 4 5 5	99.2 64.15 67.55 96.32 106.7 96.85 77.22 48.61 99.2 99.67 85.4 81.07 98.38 104 89.24 81.57 74.68	1591.0183 1602.7026 1734.0112 1746.1494 1847.0742 1985.2764 2032.2407 2048.2034 2056.2883 2056.3135 2095.1423 2151.2964 2185.356 2284.4246 2382.3027 2637.6267 2682.6079	-9.1 9.7 -0.9 3.6 1 -4.8 2.1 6.2 -1.6 8.6 8 -10 4.4 5.6 4.6 -4.4 0.8	N Y N N N N N N N N N N N N N N N N N N	NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA PAAAVLKLLK VGGSLLKLVAPAAAEVLARVV KLVAPAAAEVLANKLFVPPT AAPAVVRVALKLAAKALLPQQ APAAVLKALLKLAAKALLPQQ APAAVLKALLKLAAKALLPQQ APAAVKKLLKLAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVAKLLAKLAAKALMSKW EAVAGPVVKLLKLAAKALVGAPA VGVASLAKAALKLLVAAVAPAAALP M(+15.99)LRTRKQLDKAAAAFMKLFQ QLKSARTLSAKAEELLKKLLAKKA LMESLKOI SAKAFFI J KK11 AKKA	U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a U10-Mri1a U20-Mri1a	
37670 20117 21147 36271 41995 36498 26505 12035 37671 37925 30434 28430 37233 40396 32591 28659 25072 36869	13.1 11.5 13.1 14.8 14 16.4 17.2 16.4 17.2 16.5 17.3 18.9 20.6 16.4 19.7 19.7 21.2	82 82 82 82 82 82 82 82 82 82 82 82 82 8	796.5092 802.3663 579.0104 874.0851 616.6993 993.6407 678.4222 683.746 686.4356 686.451 699.3937 538.8259 729.4624 762.4864 596.5857 528.5303 537.5293 672.1842	2 3 2 3 3 3 3 3 3 3 3 3 4 3 3 4 5 5 5 4	99.2 64.15 67.55 96.32 106.7 96.85 77.22 48.61 99.2 99.67 85.4 81.07 98.38 104 89.24 81.57 74.68 97.67	1591.0183 1602.7026 1734.0112 1746.1494 1847.0742 1985.2764 2032.2407 2048.2034 2056.2883 2056.3135 2095.1423 2151.2964 2185.356 2284.4246 2382.3027 2637.6267 2682.6079 2684.7042	-9.1 9.7 -0.9 3.6 1 -4.8 2.1 6.2 -1.6 8.6 8 -10 4.4 5.6 4.6 -4.4 0.8 1 3	N Y N N N N N N N N N N N N N N N N N N	NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA PAAAVLKLLKAAKALLPQG VGGSLLKLVAPAAAEVLARVV KLVAPAAAEVLANKLFVPPT AAPAVVRALKLAAKALLPGQ APAAVLKALLKLAAKALLPGQ APAAVLKALLKLAAKALLVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVAKLLAKLAAKALVGAPA VGVASLAKAALKLLVAAVAPAAALP M(+15.99)LRTRKQLDKAAAAFMKLFQ QLKSARTLSAKAEELLKKLLAKKA LMESLKQLSAKAEELLKKLLAKKA	U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a U20-Mri1a U20-Mri1a U20-Mri1a	
37670 20117 21147 36271 41995 36498 26505 12035 37671 37925 30434 28430 37233 40396 32591 28659 25072 36869 27002	13.1 11.5 13.1 14.8 16.4 17.2 16.4 17.2 17.9 16.5 17.3 18.9 20.6 16.4 19.7 19.7 21.3 22.3	82 82 82 82 82 82 82 82 82 82 82 82 82 8	796.5092 802.3663 579.0104 874.0851 616.6993 993.6407 678.4222 683.746 686.4356 686.451 699.3937 538.8259 729.4624 762.4864 752.4864 596.5857 528.5303 537.5293 672.1842	2 3 2 3 3 3 3 3 3 3 3 3 3 4 3 3 4 5 5 4 4	99.2 64.15 67.55 96.32 106.7 96.85 77.22 48.61 99.2 99.67 85.4 81.07 98.38 104 89.24 81.27 74.68 97.67	1591.0183 1602.7026 1734.0112 1746.1494 1847.0742 1985.2764 2032.2407 2048.2034 2056.2883 2056.3135 2095.1423 2151.2964 2185.356 2284.4246 2382.3027 2637.6267 2682.6079 2684.7043 2710.7087	-9.1 9.7 -0.9 3.6 1 -4.8 2.1 6.2 -1.6 8.6 -10 4.4 5.6 4.6 -4.4 0.8 1.3 11.2	N Y N	NKLGLIKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGILKLAAKALVGAPA LGIPLALLMTLPFLQHA PAAAVLKLLKAAKALLPQG VGGSLLKLVAPAAAEVLARVV KLVAPAAAEVLANKLFVPPT AAPAVVRALKLAAKALLPQQ APAAVLKALLKAAKALLPQQ APAAVLKALKLAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVAKLLAKLAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVAKLLAKLAAKALVGAPA VGVASLAKAALKLLVAAVAPAAALP M(+15.99)LRTRKQLDKAAAAAALP M(+15.99)LRTRKQLDKAAAAEVLAKKA LMESLKQLSAKAEELLKKLLAKKA KNALLTALKLLKLVAPAAAEVLARVV	U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a U10-Mri1a U20-Mri1a U20-Mri1a U10-Mri1c U10-Mri1c	
37670 20117 21147 36271 41995 36498 26505 12035 37671 37925 30434 28430 37233 40396 32591 28659 25072 36869 37002	13.1 11.5 13.1 14.8 14 16.4 17.2 16.4 17.2 17.9 16.5 17.3 18.9 20.6 16.4 19.7 19.7 21.3 23 23	82 82 82 82 82 82 82 82 82 82 82 82 82 8	796.5092 802.3663 579.0104 874.0851 616.6993 993.6407 678.4222 683.746 686.4356 686.451 699.3937 538.8259 729.4624 762.4864 596.5857 528.5303 537.5293 672.1842 678.692	2 3 2 3 3 3 3 3 3 3 3 3 3 4 3 3 4 5 5 4 4 4 4	99.2 64.15 67.55 96.32 106.7 96.85 77.22 48.61 99.2 99.67 85.4 81.07 98.38 104 89.24 81.57 74.68 97.64	1591.0183 1602.7026 1734.0112 1746.1494 1847.0742 1985.2764 2032.2407 2048.2034 2056.2883 2056.3135 2095.1423 2151.2964 2185.356 2284.4246 2382.3027 2637.6267 2682.6079 2684.7043 2710.7087	-9.1 9.7 -0.9 3.6 1 -4.8 2.1 6.2 -1.6 8.6 -1.6 8.6 -10 4.4 5.6 4.6 4.6 -4.4 0.8 1.3 11.2	N Y N N N N N N N N N N N N N N N N N N	NKLGLIKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGILKLAAKALVGAPA LGIPLALLMTLPFLQHA PAAAVLKLLKAAKALLPQG VGGSLLKLVAPAAAEVLANKLFVPPT AAPAVVRALKLAAKALLPQQ APAAVLKALLKLAAKALLPQQ APAAVLKALKLAAKALLPQQ APAAVKKALKLAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVAKLLAKLAAKALVGAPA VGVASLAKAALKLLVAAVAPAAALP M(+15.99)LRTRKQLDKAAAAFMKLFQ QLKSARTLSAKAEELLKKLLAKKA LMESLKQLSAKAEELLKKLLAKKA KNALLTALKLLKLVAPAAAEVLARVV	U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a U10-Mri1a U20-Mri1a U20-Mri1a U10-Mri1c U10-Mri1c	
37670 20117 21147 36271 41995 36498 26505 12035 37671 37925 30434 28430 37233 40396 32591 28659 25072 36869 37002 41792	13.1 11.5 13.1 14.8 14 16.4 17.2 16.4 17.2 17.9 16.5 17.3 18.9 20.6 16.4 19.7 21.3 23 23 23 23	82 82 82 82 82 82 82 82 82 82 82 82 82 8	796.5092 802.3663 579.0104 874.0851 616.6993 993.6407 678.4222 683.746 686.4356 686.451 699.3937 538.8259 729.4624 762.4864 596.5857 528.5303 537.5293 672.1842 678.692 690.1826	2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 4 3 5 5 4 4 4 4	99.2 64.15 67.55 96.32 106.7 96.85 77.22 48.61 99.2 99.67 85.4 81.07 98.38 104 89.24 81.57 74.68 97.67 97.94 106.4	1591.0183 1602.7026 1734.0112 1746.1494 1847.0742 1985.2764 2032.2407 2048.2034 2056.2883 2056.3135 2095.1423 2151.2964 2185.356 2284.4246 2382.3027 2637.6267 2682.6079 2684.7043 2710.7087 2756.689	-9.1 9.7 -0.9 3.6 1 -4.8 2.1 6.2 -1.6 8.6 8 -10 4.4 5.6 4.6 4.6 -4.4 0.8 1.3 11.2 4.5	N Y N N N N N N N N N N N N N N N N N	NKLGLIKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGILKLAAKALVGAPA LGIPLALLMTLPFLQHA PAAAVLKLLKAAKALLPQG VGGSLLKLVAPAAAEVLARVV KLVAPAAAEVLANKLFVPPT AAPAVVKALKLAAKALLPGQ APAAVLKALLKLAAKALVGAAP PQGAKKLGIFDQLDKAAAPQ APAAVKKLLKLAAKALVGAAP PQGAKKLGIFDQLDKAAAPQ APAAVKKLLKLAAKALVGAPA VGVASLAKAALKLLVAAVAPAAALP M(+15.99)LRTRKQLDKAAAAFMKLFQ QLKSARTLSAKAEELLKKLLAKKA LMESLKQLSAKAEELLKKLLAKKA KNALLTALKLLKLVAPAAAEVLARVV VGSGLLAKVGVKLLKLVAPAAAEVLARVV	U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a U10-Mri1a U20-Mri1a U20-Mri1a U10-Mri1c U10-Mri1c U10-Mri1c	
37670 20117 21147 36271 41995 36498 26505 12035 37671 37925 30434 28430 37233 40396 32591 28659 25072 36869 37002 41792 36295	13.1 11.5 13.1 14.8 14 16.4 17.2 16.4 17.2 17.9 16.5 17.3 18.9 20.6 16.4 19.7 21.3 23 23 23 23 23	82 82 82 82 82 82 82 82 82 82 82 82 82 8	796.5092 802.3663 579.0104 874.0851 616.6993 993.6407 678.4222 683.746 686.4356 686.451 699.3937 538.8259 729.4624 762.4864 596.5857 528.5303 537.5293 672.1842 678.692 690.1826 706.9519	2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	99.2 64.15 67.55 96.32 106.7 96.85 77.22 48.61 99.2 99.67 85.4 81.07 98.38 104 89.24 81.57 74.68 97.67 97.94 106.4 96.87 97.94	1591.0183 1602.7026 1734.0112 1746.1494 1847.0742 1985.2764 2032.2407 2048.2034 2056.2883 2056.3135 2095.1423 2151.2964 2185.356 2284.4246 2382.3027 2637.6267 2682.6079 2684.7043 2710.7087 2756.689 2823.7676	-9.1 9.7 -0.9 3.6 1 -4.8 2.1 6.2 -1.6 8.6 8 -10 4.4 5.6 4.6 -4.4 0.8 1.3 11.2 4.5 3.9	N Y N N N N N N N N N N N N N N N N N N	NKLGLIKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGILKLAAKALVGAPA LGIPLALLMTLPFLQHA PAAAVLKLLKAAKALLPQG VGGSLLKLVAPAAAEVLARVV KLVAPAAAEVLANKLFVPPT AAPAVKKLLKLAAKALLPGQ APAAVLKALLKLAAKALLPGQ APAAVLKALLKLAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVKKLLKLAAKALVGAPA VGVASLAKAALKLLVAAVAPAAALP M(+15.99)LRTRKQLDKAAAAFMKLFQ QLKSARTLSAKAEELLKKLLAKKA LMESLKQLSAKAEELLKKLLAKKA KNALLTALKLLKLVAPAAAEVLARVV VGSGLLAKVGVKLLKLVAPAAAEVLARVV	U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a U20-Mri1a U20-Mri1a U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c	
37670 20117 21147 36271 41995 36498 26505 12035 37671 37925 30434 28430 37233 40396 32591 28659 25072 36869 37002 41792 36295 37323	13.1 11.5 13.1 14.8 14 16.4 17.2 16.4 17.2 17.9 16.5 17.3 18.9 20.6 16.4 19.7 21.3 23 23 23 23 23 23 23.9	82 82 82 82 82 82 82 82 82 82 82 82 82 8	796.5092 802.3663 579.0104 874.0851 616.6993 993.6407 678.4222 683.746 686.4356 686.451 699.3937 538.8259 729.4624 762.4864 596.5857 528.5303 537.5293 672.1842 678.692 690.1826 706.9519 565.9708	2 3 2 3 3 3 3 3 3 3 3 3 3 4 3 3 4 5 5 4 4 4 4	99.2 64.15 67.55 96.32 106.7 96.85 77.22 48.61 99.2 99.67 85.4 81.07 98.38 104 89.24 81.57 74.68 97.67 97.94 106.4 96.87 98.55	1591.0183 1602.7026 1734.0112 1746.1494 1847.0742 1985.2764 2032.2407 2048.2034 2056.2883 2056.3135 2095.1423 2151.2964 2185.356 2284.4246 2382.3027 2637.6267 2682.6079 2684.7043 2710.7087 2756.689 2823.7676 2824.7881	-9.1 9.7 -0.9 3.6 1 -4.8 2.1 6.2 -1.6 8.6 8 -10 4.4 5.6 4.6 -4.4 0.8 1.3 11.2 4.5 3.9 10.5	N Y Y N N <td>NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA PAAAVLKLLK VGGSLLKLVAPAAAEVLARVV KLVAPAAAEVLANKLFVPPT AAPAVVRVALKLAAKALLPQQ APAAVLKALLKLAAKALLPQQ APAAVLKALLKLAAKALLPQQ APAAVLKALLKLAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVAKLLAKLAAKALVGAPA VGVASLAKAALKLLVAAVAPAAALP M(+15.99)LRTRKQLDKAAAAFMKLFQ QLKSARTLSAKAEELLKKLLAKKA LMESLKQLSAKAEELLKKLLAKKA KNALLTALKLLKLVAPAAAEVLARVV VGSGLLAKVGVKLLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLLAAKALGQPL VGGSLLAKAALKLLKLVAAPAAAEVVKVPV</td> <td>U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a U20-Mri1a U20-Mri1a U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c</td>	NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA PAAAVLKLLK VGGSLLKLVAPAAAEVLARVV KLVAPAAAEVLANKLFVPPT AAPAVVRVALKLAAKALLPQQ APAAVLKALLKLAAKALLPQQ APAAVLKALLKLAAKALLPQQ APAAVLKALLKLAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVAKLLAKLAAKALVGAPA VGVASLAKAALKLLVAAVAPAAALP M(+15.99)LRTRKQLDKAAAAFMKLFQ QLKSARTLSAKAEELLKKLLAKKA LMESLKQLSAKAEELLKKLLAKKA KNALLTALKLLKLVAPAAAEVLARVV VGSGLLAKVGVKLLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLLAAKALGQPL VGGSLLAKAALKLLKLVAAPAAAEVVKVPV	U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a U20-Mri1a U20-Mri1a U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c	
37670 20117 21147 36271 41995 36498 26505 12035 37671 37925 30434 28430 37233 40396 32591 28659 25072 36869 37002 41792 36295 37323 41863	13.1 11.5 13.1 14.8 16.4 17.2 16.4 17.2 17.9 16.5 17.3 18.9 20.6 16.4 19.7 21.3 23 23 23 23 23 23.2 23.8	82 82 82 82 82 82 82 82 82 82 82 82 82 8	796.5092 802.3663 579.0104 874.0851 616.6993 993.6407 678.4222 683.746 686.4356 686.4356 686.451 699.3937 538.8259 729.4624 762.4864 596.5857 528.5303 537.5293 672.1842 678.692 690.1826 706.9519 565.9708 949.2441	2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 4 5 5 4 4 4 4	99.2 64.15 67.55 96.32 106.7 96.85 77.22 48.61 99.2 99.67 85.4 81.07 98.38 104 89.24 81.57 74.68 97.67 97.94 106.4 96.87 98.55 106.5	1591.0183 1602.7026 1734.0112 1746.1494 1847.0742 1985.2764 2032.2407 2048.2034 2056.2883 2056.3135 2095.1423 2151.2964 2185.356 2284.4246 2382.3027 2637.6267 2682.6079 2684.7043 2710.7087 2756.689 2823.7676 2824.7881 2844.7163	-9.1 9.7 -0.9 3.6 1 -4.8 2.1 6.2 -1.6 8.6 8 -10 4.4 5.6 4.6 -4.8 1.3 11.2 4.5 3.9 10.5 -2.1	N Y Y N N <td>NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA PAAAVLKLLK VGGSLLKLVAPAAAEVLARVV KLVAPAAAEVLANKLFVPPT AAPAVVRVALKLAAKALLPGQ APAAVLKALLKLAAKALLPGQ APAAVLKALLKLAAKALLPGQ APAAVLKALLKLAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVAKLLAKLAAKALVGAPA VGVASLAKAALKLLVAAVAPAAALP M(+15.99)LRTRKQLDKAAAAFMKLFQ QLKSARTLSAKAEELLKKLLAKKA LMESLKQLSAKAEELLKKLLAKKA KNALLTALKLLKLVAPAAAEVLARVV VGSGLLAKVGVKLLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLVAPAAAEVLANK NKALLVEAAPAAVLKLLKLVAPAAAEVLANK</td> <td>U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a U20-Mri1a U20-Mri1a U20-Mri1a U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c</td>	NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA PAAAVLKLLK VGGSLLKLVAPAAAEVLARVV KLVAPAAAEVLANKLFVPPT AAPAVVRVALKLAAKALLPGQ APAAVLKALLKLAAKALLPGQ APAAVLKALLKLAAKALLPGQ APAAVLKALLKLAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVAKLLAKLAAKALVGAPA VGVASLAKAALKLLVAAVAPAAALP M(+15.99)LRTRKQLDKAAAAFMKLFQ QLKSARTLSAKAEELLKKLLAKKA LMESLKQLSAKAEELLKKLLAKKA KNALLTALKLLKLVAPAAAEVLARVV VGSGLLAKVGVKLLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLVAPAAAEVLANK NKALLVEAAPAAVLKLLKLVAPAAAEVLANK	U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a U20-Mri1a U20-Mri1a U20-Mri1a U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c	
37670 20117 21147 36271 41995 36498 26505 12035 37671 37925 30434 28430 37233 40396 32591 28659 25072 36869 37002 41792 36295 37323 41863 27102	13.1 11.5 13.1 14.8 16.4 17.2 16.4 17.2 17.9 16.5 17.3 18.9 20.6 16.4 19.7 21.3 23 23 23 23 23 23 23.8 23.8 23.7	82 82 82 82 82 82 82 82 82 82 82 82 82 8	796.5092 802.3663 579.0104 874.0851 616.6993 993.6407 678.4222 683.746 686.4356 686.4356 686.451 699.3937 538.8259 729.4624 762.4864 596.5857 528.5303 537.5293 672.1842 678.692 690.1826 706.9519 565.9708 949.2441 950.8964	2 2 3 2 3 3 3 3 3 3 3 3 3 4 3 4 3 4 5 5 4 4 4 4 4 4 5 3 3 3 3 4 5 5 4 4 5 5 4 4 5 5 4 5 5 5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	99.2 64.15 67.55 96.32 106.7 96.85 77.22 48.61 99.2 99.67 85.4 81.07 98.38 104 89.24 81.57 74.68 97.67 97.94 106.4 96.87 98.55 106.5 78.51	1591.0183 1602.7026 1734.0112 1746.1494 1847.0742 1985.2764 2032.2407 2048.2034 2056.2883 2056.3135 2095.1423 2151.2964 2185.356 2284.4246 2382.3027 2637.6267 2682.6079 2684.7043 2710.7087 2756.689 2823.7676 2824.7881 2844.7163 2849.6562	-9.1 9.7 -0.9 3.6 1 -4.8 2.1 6.2 -1.6 8.6 8 -10 4.4 5.6 4.6 -4.8 1.3 11.2 4.5 3.9 10.5 -2.1 3.9	N Y Y N N <td>NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA PAAAVLKLLKLAAKALLPQG VGGSLLKLVAPAAAEVLARVV KLVAPAAAEVLANKLFVPPT AAPAVVRVALKLAAKALLPGQ APAAVLKALLKLAAKALLPGQ APAAVLKALLKLAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVKLLAKLAAKALVGAPA VGVASLAKAALKLLVAAVAPAAALP M(+15.99)LRTRKQLDKAAAAFMKLFQ QLKSARTLSAKAEELLKKLLAKKA LMESLKQLSAKAEELLKKLLAKKA KNALLTALKLLKLVAPAAAEVLARVV VGSGLLAKVGVKLLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK</td> <td>U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a U20-Mri1a U20-Mri1a U20-Mri1a U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c</td>	NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA PAAAVLKLLKLAAKALLPQG VGGSLLKLVAPAAAEVLARVV KLVAPAAAEVLANKLFVPPT AAPAVVRVALKLAAKALLPGQ APAAVLKALLKLAAKALLPGQ APAAVLKALLKLAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVKLLAKLAAKALVGAPA VGVASLAKAALKLLVAAVAPAAALP M(+15.99)LRTRKQLDKAAAAFMKLFQ QLKSARTLSAKAEELLKKLLAKKA LMESLKQLSAKAEELLKKLLAKKA KNALLTALKLLKLVAPAAAEVLARVV VGSGLLAKVGVKLLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK	U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a U20-Mri1a U20-Mri1a U20-Mri1a U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c	
37670 20117 21147 36271 41995 36498 26505 12035 37671 37925 30434 28430 37233 40396 32591 28659 25072 36869 37002 41792 36295 37323 41863 27102 21792	13.1 11.5 13.1 14.8 16.4 17.2 16.4 17.2 17.9 16.5 17.3 18.9 20.6 16.4 19.7 21.3 23 23 23 23 23 23 23.8 23.7 22.3	82 82 82 82 82 82 82 82 82 82 82 82 82 8	796.5092 802.3663 579.0104 874.0851 616.6993 993.6407 678.4222 683.746 686.4356 686.451 699.3937 538.8259 729.4624 762.4864 596.5857 528.5303 537.5293 672.1842 678.692 690.1826 706.9519 565.9708 949.2441 950.8964 726.897	2 2 3 2 3 3 3 3 3 3 3 4 3 4 5 5 4 4 4 4 5 3 3 4 5 4 4 4 5 5 4 4 4 5 5 4 4 4 5 5 4 4 4 5 5 4 4 5 5 4 4 5 5 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	99.2 64.15 67.55 96.32 106.7 96.85 77.22 48.61 99.2 99.67 85.4 81.07 98.38 104 89.24 81.57 74.68 97.67 97.94 106.4 96.87 98.55 106.5 78.51 68.28	1591.0183 1602.7026 1734.0112 1746.1494 1847.0742 1985.2764 2032.2407 2048.2034 2056.2883 2056.3135 2095.1423 2151.2964 2185.356 2284.4246 2382.3027 2637.6267 2682.6079 2684.7043 2710.7087 2756.689 2823.7676 2824.7881 2844.7163 2849.6562 2903.5579	-9.1 9.7 -0.9 3.6 1 -4.8 2.1 6.2 -1.6 8.6 8 -10 4.4 5.6 4.6 -4.8 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3.9 0.4	N Y N N N <td>NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA PAAAVLKLLKLAAKALLPQG VGGSLLKLVAPAAAEVLARVV KLVAPAAAEVLANKLFVPPT AAPAVVRVALKLAAKALLPGQ APAAVLKALLKLAAKALLPGQ APAAVLKALLKLAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVAKLLAKLAAKALVGAPA VGVASLAKAALKLLVAAVAPAAALP M(+15.99)LRTRKQLDKAAAAFMKLFQ QLKSARTLSAKAEELLKKLLAKKA LMESLKQLSAKAEELLKKLLAKKA KNALLTALKLLKLVAPAAAEVLARVV VGSGLLAKVGVKLLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK</td> <td>U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a U20-Mri1a U20-Mri1a U20-Mri1a U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a</td>	NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA PAAAVLKLLKLAAKALLPQG VGGSLLKLVAPAAAEVLARVV KLVAPAAAEVLANKLFVPPT AAPAVVRVALKLAAKALLPGQ APAAVLKALLKLAAKALLPGQ APAAVLKALLKLAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVAKLLAKLAAKALVGAPA VGVASLAKAALKLLVAAVAPAAALP M(+15.99)LRTRKQLDKAAAAFMKLFQ QLKSARTLSAKAEELLKKLLAKKA LMESLKQLSAKAEELLKKLLAKKA KNALLTALKLLKLVAPAAAEVLARVV VGSGLLAKVGVKLLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK	U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a U20-Mri1a U20-Mri1a U20-Mri1a U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a	
37670 20117 21147 36271 41995 36498 26505 12035 37671 37925 30434 28430 37233 40396 32591 28659 25072 36869 37002 41792 36295 37323 41863 27102 21792 41925	13.1 11.5 13.1 14.8 14.1 16.4 17.2 16.4 17.2 16.5 17.3 18.9 20.6 16.4 19.7 21.3 23 23 23.8 23.7 23.8 23.7 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.3 22.3	82 82 82 82 82 82 82 82 82 82 82 82 82 8	796.5092 802.3663 579.0104 874.0851 616.6993 993.6407 678.4222 683.746 686.4356 686.451 699.3937 538.8259 729.4624 762.4864 596.5857 528.5303 537.5293 672.1842 678.692 690.1826 706.9519 565.9708 949.2441 950.8964 726.897 1010.943	2 2 3 2 3 3 3 3 3 3 3 3 4 3 4 5 5 4 4 4 4 5 3 3 4 5 4 4 4 5 5 4 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	99.2 64.15 67.55 96.32 106.7 96.85 77.22 48.61 99.2 99.67 85.4 81.07 98.38 104 89.24 81.57 74.68 97.67 97.94 106.4 96.87 98.55 106.5 78.51 68.28 106.5	1591.0183 1602.7026 1734.0112 1746.1494 1847.0742 1985.2764 2032.2407 2048.2034 2056.2883 2056.3135 2095.1423 2151.2964 2185.356 2284.4246 2382.3027 2637.6267 2682.6079 2684.7043 2710.7087 2756.689 2823.7676 2824.7881 2844.7163 2849.6562 2903.5579 3029.8367	-9.1 9.7 -0.9 3.6 1 -4.8 2.1 6.2 -1.6 8.6 8 -10 4.4 5.6 4.6 4.6 -4.4 0.8 1.3 11.2 4.5 3.9 10.5 -2.1 3.9 0.4 -9.4	N Y N N N <td>NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA PAAAVLKLLKLAAKALLPQG VGGSLLKLVAPAAAEVLARVV KLVAPAAAEVLANKLFVPPT AAPAVVRVALKLAAKALLPGQ APAAVLKALLKLAAKALLPGQ APAAVLKALLKLAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVAKLLAKLAAKALVGAPA VGVASLAKAALKLLVAAVAPAAALP M(+15.99)LRTRKQLDKAAAAFMKLFQ QLKSARTLSAKAEELLKKLLAKKA LMESLKQLSAKAEELLKKLLAKKA KNALLTALKLLKLVAPAAAEVLARVV VGSGLLAKVGVKLLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QLPPMLAKAALKLLKLVAPAAAEVLANK</td> <td>U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a U20-Mri1a U20-Mri1a U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1a U10-Mri1c</td>	NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA PAAAVLKLLKLAAKALLPQG VGGSLLKLVAPAAAEVLARVV KLVAPAAAEVLANKLFVPPT AAPAVVRVALKLAAKALLPGQ APAAVLKALLKLAAKALLPGQ APAAVLKALLKLAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVAKLLAKLAAKALVGAPA VGVASLAKAALKLLVAAVAPAAALP M(+15.99)LRTRKQLDKAAAAFMKLFQ QLKSARTLSAKAEELLKKLLAKKA LMESLKQLSAKAEELLKKLLAKKA KNALLTALKLLKLVAPAAAEVLARVV VGSGLLAKVGVKLLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QLPPMLAKAALKLLKLVAPAAAEVLANK	U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a U20-Mri1a U20-Mri1a U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1a U10-Mri1c	
37670 20117 21147 36271 41995 36498 26505 12035 37671 37925 30434 28430 37233 40396 32591 28659 25072 36869 37002 41792 36295 37323 41863 27102 21792 41925 27869	13.1 11.5 13.1 14.8 14.1 16.4 17.2 16.4 17.2 16.5 17.3 18.9 20.6 16.4 19.7 21.3 23 23 23.8 23.7 22.3 22.3 22.3 22.3 22.1 23	82 82 82 82 82 82 82 82 82 82 82 82 82 8	796.5092 802.3663 579.0104 874.0851 616.6993 993.6407 678.4222 683.746 686.4356 686.451 699.3937 538.8259 729.4624 762.4864 596.5857 528.5303 537.5293 672.1842 678.692 690.1826 706.9519 565.9708 949.2441 950.8964 726.897 1010.943 609.9587	2 2 3 2 3 3 3 3 3 3 3 4 3 4 5 5 4 4 4 5 3 4 5 5 4 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 5 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	99.2 64.15 67.55 96.32 106.7 96.85 77.22 48.61 99.2 99.67 85.4 81.07 98.38 104 89.24 81.57 74.68 97.67 97.94 106.4 96.87 98.55 106.5 78.51 68.28 106.5 79.91	1591.0183 1602.7026 1734.0112 1746.1494 1847.0742 1985.2764 2032.2407 2048.2034 2056.2883 2056.3135 2095.1423 2151.2964 2185.356 2284.4246 2382.3027 2637.6267 2637.6267 2682.6079 2684.7043 2710.7087 2756.689 2823.7676 2824.7881 2844.7163 2849.6562 2903.5579 3029.8367 3044.7341	-9.1 9.7 -0.9 3.6 1 -4.8 2.1 6.2 -1.6 8.6 8 -10 4.4 5.6 4.6 4.6 -4.4 0.8 1.3 11.2 4.5 3.9 10.5 -2.1 3.9 0.4 -9.4 7.5	N Y N N	NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA PAAAVLKLLKLAAKALLPQG VGGSLLKLVAPAAAEVLARVV KLVAPAAAEVLANKLFVPPT AAPAVVRVALKLAAKALLPGQ APAAVLKALKLAAKALLPGQ APAAVLKALKLAAKALLGQQ APAAVLKALKLAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVAKLLAKLAAKALVGAPA VGVASLAKAALKLLVAAVAPAAALP M(+15.99)LRTRKQLDKAAAAFMKLFQ QLKSARTLSAKAEELLKKLLAKKA LMESLKQLSAKAEELLKKLLAKKA KNALLTALKLLKLVAPAAAEVLARVV VGSGLLAKVGVKLLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QLSDQPANAKKLGLFDQLDKAAAAFMKL DLYLLAKRVKLLKLVADLNPVLAPQLN CTTGLMESLKQLTGKEAELLKKLLAKKA	U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a U20-Mri1a U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c	
37670 20117 21147 36271 41995 36498 26505 12035 37671 37925 30434 28430 37233 40396 32591 28659 25072 36869 37002 41792 36295 37323 41863 27102 21792 41925 27869 30274	13.1 11.5 13.1 14.8 14 16.4 17.2 16.4 17.2 17.9 16.5 17.3 18.9 20.6 16.4 19.7 21.3 23 23 23 23 23 23 23 23 23 23 23 23 23	82 82 82 82 82 82 82 82 82 82 82 82 82 8	796.5092 802.3663 579.0104 874.0851 616.6993 993.6407 678.4222 683.746 686.4356 686.451 699.3937 538.8259 729.4624 762.4864 596.5857 528.5303 537.5293 672.1842 678.692 690.1826 706.9519 565.9708 949.2441 950.8964 726.897 1010.943 609.9587 794.7291	2 2 3 2 3 3 3 3 3 3 3 4 3 3 4 5 5 4 4 4 5 3 4 5 5 4 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 5 4 4 5 5 5 4 4 5 5 5 4 4 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	99.2 64.15 67.55 96.32 106.7 96.85 77.22 48.61 99.2 99.67 85.4 81.07 98.38 104 89.24 81.57 74.68 97.67 97.94 106.4 97.97 106.4 96.87 98.55 106.5 78.51 68.28 106.5 79.91 85.14	1591.0183 1602.7026 1734.0112 1746.1494 1847.0742 1985.2764 2032.2407 2048.2034 2056.2883 2056.3135 2095.1423 2151.2964 2185.356 2284.4246 2382.3027 2637.6267 2682.6079 2684.7043 2710.7087 2756.689 2823.7676 2824.7881 2844.7163 2844.7163 2844.7163 2844.7163 2844.76562 2903.5579 3029.8367 3044.7341 3174.8643	-9.1 9.7 -0.9 3.6 1 -4.8 2.1 6.2 -1.6 8.6 8 -10 4.4 5.6 4.6 -4.4 0.8 1.3 11.2 4.5 3.9 10.5 -2.1 3.9 10.5 -2.1 3.9 0.4 -9.4 7.5 7.3	N Y N N	NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA PAAAVLKLLKLAAKALLPQG VGGSLLKLVAPAAAEVLARVV KLVAPAAAEVLANKLFVPPT AAPAVVRVALKLAAKALLPGQ APAAVLKALLKAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVAKLLAKLAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVAKLLAKLAAKALVGAPA VGVASLAKAALKLLVAAVAPAAALP M(+15.99)LRTRKQLDKAAAAFMKLFQ QLKSARTLSAKAEELLKKLLAKKA LMESLKQLSAKAEELLKKLLAKKA KNALLTALKLLKLVAPAAAEVLARVV VGSGLLAKVGVKLLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLVAPAAAEVLANK QPPMLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKAVAAPAAAALAEPQ LSDQPANAKKLGLFDQLDKAAAAFMKL DLYLLAKRVKLLKLVADLNPVLAPQLN CTTGLMESLKQLTGKEAELLKKLLKKAAALALKLKKA LKDALAAAAGAAAPAVAAKLLKFAAAAALAVKW	U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a U20-Mri1a U20-Mri1a U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1a U10-Mri1c	
37670 20117 21147 36271 41995 36498 26505 12035 37671 37925 30434 28430 37233 40396 32591 28659 25072 36869 37002 41792 36295 37323 41863 27102 21792 41925 27869 30274 32629	13.1 11.5 13.1 14.8 14 16.4 17.2 16.4 17.2 17.9 16.5 17.3 18.9 20.6 16.4 19.7 21.3 23 23 23 23 23 23 23 23 23 23 23 23 23	82 82 82 82 82 82 82 82 82 82 82 82 82 8	796.5092 802.3663 579.0104 874.0851 616.6993 993.6407 678.4222 683.746 686.4356 686.451 699.3937 538.8259 729.4624 762.4864 596.5857 528.5303 537.5293 672.1842 678.692 690.1826 706.9519 565.9708 949.2441 950.8964 726.897 1010.943 609.9587 794.7291 837.9678	2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	99.2 64.15 67.55 96.32 106.7 96.85 77.22 48.61 99.2 99.67 85.4 81.07 98.38 104 89.24 81.57 74.68 97.67 97.94 106.4 96.87 97.94 106.5 78.51 68.28 106.5 78.51 68.28 106.5	1591.0183 1602.7026 1734.0112 1746.1494 1847.0742 1985.2764 2032.2407 2048.2034 2056.2883 2056.3135 2095.1423 2151.2964 2185.356 2284.4246 2382.3027 2637.6267 2682.6079 2684.7043 2710.7087 2756.689 2823.7676 2824.7881 2844.7163 2849.6562 2903.5579 3029.8367 3044.7341 3174.8643 3347.8381	-9.1 9.7 -0.9 3.6 1 -4.8 2.1 6.2 -1.6 8.6 8 -10 4.4 5.6 4.6 4.6 -4.4 0.8 1.3 11.2 4.5 3.9 10.5 -2.1 3.9 0.4 -9.4 7.5 7.3 1.2	N Y N N	NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA PAAAVLKLLKAAKALPQG VGGSLLKLVAPAAAEVLARVV KLVAPAAAEVLANKLFVPPT AAPAVVRVALKLAAKALLPGQ APAAVLKALLKAAKALPGQ APAAVLKALKLAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVKKLLKLAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVAKLLAKLAAKALVGAPA VGVASLAKAALKLLVAAVAPAAALP M(+15.99)LRTRKQLDKAAAAFMKLFQ QLKSARTLSAKAEELLKKLLAKKA LMESLKQLSAKAEELLKKLLAKKA KNALLTALKLLKLVAPAAAEVLARVV VGSGLLAKVGVKLLKLVAPAAAEVLANK NKALLVEAAPAAVLKLLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLKLAKAALGQPL VGGSLLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QPPMLAKAALKLLKVAPAAAEVLANK QPPPMLAKAALKLLKVAPAAAEVLANK QLYLLAKRVKLLKLVADLNPVLAPQLN CTTGLMESLKQLTGKEAELLKKLLKKA LKDALAAAAGAAAAPAVAKKLKFAAAAALAVKW AVMESLKQLSAKVEKLLKKLLAAOKPLOYCYC	U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1c/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1a U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a U20-Mri1a U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1a U10-Mri1c U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a	
37670 20117 21147 36271 41995 36498 26505 12035 37671 37925 30434 28430 37233 40396 32591 28659 25072 36869 37002 41792 36295 37323 41863 27102 21792 41925 27869 30274 32629 17341	13.1 11.5 13.1 14.8 14 16.4 17.2 16.4 17.2 17.9 16.5 17.3 18.9 20.6 16.4 19.7 21.3 23 23.9 23.8 23.9 23.8 23.9 23.8 23.9 23.8 23.9 23.8 23.9 23.8 23.9 23.8 23.9 23.8 23.7 22.1 23 23.7 23.2 23.8 23.7 23.2 23.8 23.7 23.8 23.6 6 6	82 82 82 82 82 82 82 82 82 82 82 82 82 8	796.5092 802.3663 579.0104 874.0851 616.6993 993.6407 678.4222 683.746 686.4356 686.451 699.3937 538.8259 729.4624 762.4864 596.5857 528.5303 537.5293 672.1842 678.692 690.1826 706.9519 565.9708 949.2441 950.8964 726.897 1010.943 609.9587 794.7291 837.9678 426.787	2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	99.2 64.15 67.55 96.32 106.7 96.85 77.22 48.61 99.2 99.67 85.4 81.07 98.38 104 89.24 81.57 74.68 97.67 97.94 106.4 96.87 97.94 106.4 96.87 97.94 106.5 78.51 68.28 106.5 78.51 68.28 106.5 78.51 68.28	1591.0183 1602.7026 1734.0112 1746.1494 1847.0742 1985.2764 2032.2407 2048.2034 2056.3135 2095.1423 2151.2964 2185.356 2284.4246 2382.3027 2637.6267 2682.6079 2684.7043 2710.7087 2756.689 2823.7676 2824.7881 2844.7163 2849.6562 2903.5579 3029.8367 3044.7341 3174.8643 3347.8381	-9.1 9.7 -0.9 3.6 1 -4.8 2.1 6.2 -1.6 8.6 8 -10 4.4 5.6 4.6 -4.4 0.8 1.3 11.2 4.5 3.9 10.5 -2.1 3.9 10.5 -2.1 3.9 0.4 -9.4 7.5 7.3 1.2 0.3	N Y N N	NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA PAAAVLKLLKAAKALPQG VGGSLLKLVAPAAAEVLANKLPVPT AAPAVVRVALKLAAKALLPQQ APAAVLKALKLAAKALLPQQ APAAVLKALKLAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVKALKLAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVAKLLAKLAAKALWGAPA VGVASLAKAALKLLVAAVAPAAALP M(+15.99)LRTRKQLDKAAAAFMKLFQ QLKSARTLSAKAEELLKKLLAKKA LMESLKQLSAKAEELLKKLLAKKA KNALLTALKLLKLVAPAAAEVLARVV VGSGLLAKVGVKLLKLVAPAAAEVLARVV VGSGLLAKAALKLLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLLAAKALGQPL VGGSLLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QLPPMLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QLYLLARKVKLLKLVADLNPVLAPQLN CTTGLMESLKQLTGKEAELLKKLLAAQKPDCYC AVMESLKQLSAKVEKLLKKLLAAQKPDCYC	U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a U20-Mri1a U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1a U10-Mri1c U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a	
37670 20117 21147 36271 41995 36498 26505 12035 37671 37925 30434 28430 37233 40396 32591 28659 25072 36869 37002 41792 36295 37323 41863 27102 21792 41925 27869 30274 32629 17341 36291 30274	13.1 11.5 13.1 14.8 14 16.4 17.2 16.5 17.3 18.9 20.6 16.4 19.7 21.3 23 23 23.2 24.6 6.6 6.6	82 82 82 82 82 82 82 82 82 82 82 82 82 8	796.5092 802.3663 579.0104 874.0851 616.6993 993.6407 678.4222 683.746 686.4356 686.451 699.3937 538.8259 729.4624 762.4864 596.5857 528.5303 537.5293 672.1842 678.692 690.1826 706.9519 565.9708 949.2441 950.8964 726.897 1010.943 609.9587 794.7291 837.9678 426.787	2 2 3 2 3 3 3 3 3 4 3 3 4 3 3 4 5 5 4 4 4 4 5 5 4 4 4 5 5 4 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 5 4 4 4 5 5 5 4 4 5 5 5 4 4 4 5 5 5 4 4 4 5 5 5 4 4 4 5 5 5 4 4 4 5 5 5 4 4 4 5 5 5 4 4 4 5 5 5 4 4 4 5 5 5 4 4 4 5 5 5 4 4 4 5 5 5 4 4 4 5 5 5 4 4 4 5 5 4 4 4 5 5 4 4 4 5 5 4 4 4 5 5 5 4 4 4 5 5 5 4 4 4 5 5 5 4 4 4 5 5 5 4 4 4 5 5 5 4 4 4 5 5 5 4 4 4 5 5 5 4 4 4 5 5 5 4 4 4 5 5 5 4 4 4 5 5 5 4 4 4 5 5 5 4 4 4 5 5 4 4 4 2 2 5 5 4 4 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5	99.2 64.15 67.55 96.32 106.7 96.85 77.22 48.61 99.2 99.67 85.4 81.07 98.38 104 89.24 81.57 74.68 97.67 97.94 106.4 96.87 97.94 106.4 96.87 97.94 106.5 78.51 68.28 106.5 79.91 85.14 89.29 58.08	1591.0183 1602.7026 1734.0112 1746.1494 1847.0742 1985.2764 2032.2407 2048.2034 2056.2883 2056.3135 2095.1423 2151.2964 2185.356 2284.4246 2382.3027 2637.6267 2682.6079 2684.7043 2710.7087 2756.689 2823.7676 2824.7881 2844.7163 2849.6562 2903.5579 3029.8367 3044.7341 3174.8643 3347.8381	-9.1 9.7 -0.9 3.6 1 -4.8 2.1 6.2 -1.6 8.6 8 -10 4.4 5.6 4.6 -4.4 0.8 1.3 11.2 4.5 3.9 10.5 -2.1 3.9 10.5 -2.1 3.9 0.4 -9.4 7.5 7.3 1.2 0.3 -0.1	N Y N <t< td=""><td>NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA PAAAVLKLLKLAAKALLPQG VGGSLLKLVAPAAAEVLANKLFVPPT AAPAVVRVALKLAAKALLPQQ APAAVLKALLKLAAKALLPGQ APAAVLKALKLAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVAKLLAKLAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVAKLLKLAAKALWGAPA VGVASLAKAALKLLVAAVAPAAALP M(+15.99)LRTRKQLDKAAAAFMKLFQ QLKSARTLSAKAEELLKKLLAKKA LMESLKQLSAKAEELLKKLLAKKA KNALLTALKLLKLVAPAAAEVLARVV VGSGLLAKVGVKLLKLVAPAAAEVLARVV VGGSLLAKAALKLLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLLAAKALGQPL VGGSLLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVADLNPVLAPQLN CTTGLMESLKQLTGKEAELLKKLLAAKALAVKW AVMESLKQLSAKVEKLLKKLLAAQKPDCYC AVPLLALR KKIPGLYC</td><td>U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a U20-Mri1a U20-Mri1a U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a</td></t<>	NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA PAAAVLKLLKLAAKALLPQG VGGSLLKLVAPAAAEVLANKLFVPPT AAPAVVRVALKLAAKALLPQQ APAAVLKALLKLAAKALLPGQ APAAVLKALKLAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVAKLLAKLAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVAKLLKLAAKALWGAPA VGVASLAKAALKLLVAAVAPAAALP M(+15.99)LRTRKQLDKAAAAFMKLFQ QLKSARTLSAKAEELLKKLLAKKA LMESLKQLSAKAEELLKKLLAKKA KNALLTALKLLKLVAPAAAEVLARVV VGSGLLAKVGVKLLKLVAPAAAEVLARVV VGGSLLAKAALKLLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLLAAKALGQPL VGGSLLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVADLNPVLAPQLN CTTGLMESLKQLTGKEAELLKKLLAAKALAVKW AVMESLKQLSAKVEKLLKKLLAAQKPDCYC AVPLLALR KKIPGLYC	U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a U20-Mri1a U20-Mri1a U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a	
37670 20117 21147 36271 41995 36498 26505 12035 37671 37925 30434 28430 37233 40396 32591 28659 25072 36869 37002 41792 36295 37323 41863 27102 21792 41925 27869 30274 32629 17341 5413 5414	13.1 11.5 13.1 14.8 14 16.4 17.2 16.4 17.2 16.5 17.3 18.9 20.6 16.4 19.7 21.3 23 23 23.8 23.9 23.8 23.7 23.8 22.1 23 23.8 23.7 23.8 23.7 23.8 23.7 23.8 23.7 23.8 23.7 23.8 24.6 6.6 6.6 6.6 6.6 6.6 6.6	82 82 82 82 82 82 82 82 82 82 82 82 82 8	796.5092 802.3663 579.0104 874.0851 616.6993 993.6407 678.4222 683.746 686.4356 686.451 699.3937 538.8259 729.4624 762.4864 596.5857 528.5303 537.5293 672.1842 678.692 690.1826 706.9519 565.9708 949.2441 950.8964 726.897 1010.943 609.9587 794.7291 837.9678 426.787 429.2675	2 2 3 2 3 3 3 3 3 4 3 3 4 3 3 4 5 5 4 4 4 5 5 4 4 4 5 5 4 4 4 5 5 4 4 4 5 5 4 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 4 4 5 5 5 4 4 4 5 5 5 4 4 4 5 5 5 4 4 4 5 5 5 4 4 4 5 5 5 4 4 4 5 5 5 4 4 4 5 5 5 4 4 4 5 5 5 4 4 4 5 5 5 4 4 4 5 5 5 4 4 4 5 5 5 4 4 4 5 5 4 4 4 5 5 5 4 4 4 4 5 5 4 4 4 5 5 4 4 4 5 5 4 4 4 5 5 5 4 4 4 5 5 5 4 4 4 5 5 5 4 4 4 4 5 5 5 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2	99.2 64.15 67.55 96.32 106.7 96.85 77.22 48.61 99.2 99.67 85.4 81.07 98.38 104 89.24 81.57 74.68 97.67 97.94 106.4 96.87 97.94 106.4 96.87 97.94 106.5 78.51 68.28 106.5 79.91 85.14 85.14 89.29 58.08 29.86	1591.0183 1602.7026 1734.0112 1746.1494 1847.0742 1985.2764 2032.2407 2048.2034 2056.2883 2056.3135 2095.1423 2151.2964 2185.356 2284.4246 2382.3027 2637.6267 2682.6079 2684.7043 2710.7087 2756.689 2823.7676 2824.7881 2849.6562 2903.5579 3029.8367 3044.7341 3174.8643 3347.8381 851.5593	-9.1 9.7 -0.9 3.6 1 -4.8 2.1 6.2 -1.6 8.6 8 -10 4.4 5.6 4.6 -4.4 0.8 1.3 11.2 4.5 3.9 10.5 -2.1 -2.1 3.9 10.5 -2.1 3.9 10.5 -2.1 3.9 10.5 -2.1 3.9 -2.1 3.9 -2.1 3.9 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1	N Y N N	NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA PAAAVLKLLKLAAKALLPQG VGGSLLKLVAPAAAEVLANKLFVPPT AAPAVVRVALKLAAKALLPQQ APAAVLKALLKLAAKALLPGQ APAAVLKALKLAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVAKLLAKLAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVAKLLAKLAAKALWGAPA VGVASLAKAALKLLVAAVAPAAALP M(+15.99)LRTRKQLDKAAAAFMKLFQ QLKSARTLSAKAEELLKKLLAKKA LMESLKQLSAKAEELLKKLLAKKA LMESLKQLSAKAEELLKKLLAKKA KNALLTALKLLKLVAPAAAEVLARVV VGSGLLAKVGVKLLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLLAKAALGQPL VGGSLLAKAALKLLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLLAKAALGQPL VGGSLLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKAVAAPAAAALAEPQ LSDQPANAKKLGLFDQLDKAAAAFMKL DLYLLARKVKLKLKVADLNPVLAPQLN CTTGLMESLKQLTGKEAELLKKLLAAKAALAVKW AVMESLKQLSAKVEKLLKKLLAAQKPDCYC AVPLLALR KKLPGLVC	U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a U20-Mri1a U20-Mri1a U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a	
37670 20117 21147 36271 41995 36498 26505 12035 37671 37925 30434 28430 37233 40396 32591 28659 25072 36869 37002 41792 36295 37323 41863 27102 21792 41925 27869 30274 32629 17341 5413 8181 8181	13.1 11.5 13.1 14.8 14 16.4 17.2 16.4 17.2 17.9 16.5 17.3 18.9 20.6 16.4 19.7 21.3 23 23 23 23 23 23 23 23 23 23 23 23 23	82 82 82 82 82 82 82 82 82 82 82 82 82 8	796.5092 802.3663 579.0104 874.0851 616.6993 993.6407 678.4222 683.746 686.4356 686.4356 686.451 699.3937 538.8259 729.4624 762.4864 596.5857 528.5303 537.5293 672.1842 678.692 690.1826 706.9519 565.9708 949.2441 950.8964 726.897 1010.943 609.9587 794.7291 837.9678 426.787 429.2675 442.7581	2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	99.2 64.15 67.55 96.32 106.7 96.85 77.22 48.61 99.2 99.67 85.4 81.07 98.38 104 89.24 81.57 74.68 97.67 97.94 106.4 97.67 97.94 106.4 96.87 97.94 106.5 78.51 68.28 106.5 78.51 68.28 106.5 79.91 85.14 89.29 58.08 29.86 38.75	1591.0183 1602.7026 1734.0112 1746.1494 1847.0742 1985.2764 2032.2407 2048.2034 2056.2883 2056.3135 2095.1423 2151.2964 2185.356 2284.4246 2382.3027 2637.6267 2682.6079 2684.7043 2710.7087 2756.689 2823.7676 2824.7881 2844.7163 2844.7163 2849.6562 2903.5579 3029.8367 3044.7341 3174.8643 3347.8381 851.5593 856.5204 883.5015	-9.1 9.7 -0.9 3.6 1 -4.8 2.1 6.2 -1.6 8.6 8 -10 4.4 5.6 4.6 -4.4 0.8 1.3 11.2 4.5 3.9 10.5 -2.1 3.9 0.4 -9.4 7.5 7.3 1.2 0.3 -0.3 -0.1 0.2 -0.3	N Y N N N	NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA PAAAVLKLLKLAAKALLPQG VGGSLLKLVAPAAAEVLARVV KLVAPAAAEVLANKLFVPPT AAPAVVRVALKLAAKALLPGQ APAAVLKALLKLAAKALLPGQ APAAVLKALLKLAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVAKLLAKLAAKALVGAPA VGVASLAKAALKLLVAAVAPAAALP M(+15.99)LRTRKQLDKAAAAFMKLFQ QLKSARTLSAKAEELLKKLLAKKA LMESLKQLSAKAEELLKKLLAKKA LMESLKQLSAKAEELLKKLLAKKA VGSGLLAKVGVKLLKLVAPAAAEVLARVV VGSGLLAKAALKLLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLLAAKALGQPL VGGSLLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QLVGGSLLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVADPAAAEVLANK QLYLLAKRVKLLKLVADLNPVLAPQLN CTTGLMESLKQLTGKEAELLKKLLAKKA LKDALAAAGAAAAPAVAAKLLKFAAAAALAVKW AVMESLKQLSAKVEKLLKKLLAAQKPDCYC AVPLLALR KKLPGLVC ALLDPKVL	U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a U20-Mri1a U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a	
37670 20117 21147 36271 41995 36498 26505 12035 37671 37925 30434 28430 37233 40396 32591 28659 25072 36869 37002 41792 36295 37323 41863 27102 21792 41925 27869 30274 32629 17341 5413 8181 5643	13.1 11.5 13.1 14.8 14 16.4 17.2 16.4 17.2 17.9 16.5 17.3 18.9 20.6 16.4 19.7 21.3 23 23 23 23 23 23 23 23 23 23 23 23 23	82 82 82 82 82 82 82 82 82 82 82 82 82 8	796.5092 802.3663 579.0104 874.0851 616.6993 993.6407 678.4222 683.746 686.4356 686.4356 686.451 699.3937 538.8259 729.4624 762.4864 596.5857 528.5303 537.5293 672.1842 678.692 690.1826 706.9519 565.9708 949.2441 950.8964 726.897 1010.943 609.9587 794.7291 837.9678 426.787 429.2675 442.7581 454.7512	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	99.2 64.15 67.55 96.32 106.7 96.85 77.22 48.61 99.2 99.67 85.4 81.07 98.38 104 89.24 81.57 74.68 97.67 97.94 106.4 97.67 97.94 106.4 96.87 97.94 106.5 78.51 68.28 106.5 78.51 68.28 106.5 78.51 68.28 106.5 78.51 68.28 106.5 79.91 85.14 89.29 58.08 29.86 38.73 30.56	1591.0183 1602.7026 1734.0112 1746.1494 1847.0742 1985.2764 2032.2407 2048.2034 2056.2883 2056.3135 2095.1423 2151.2964 2185.356 2284.4246 2382.3027 2637.6267 2682.6079 2684.7043 2710.7087 2756.689 2823.7676 2824.7881 2844.7163 2844.7163 2844.7163 2849.6562 2903.5579 3029.8367 3044.7341 3174.8643 3347.8381 851.5593 856.5204 883.5015 907.4916	-9.1 9.7 -0.9 3.6 1 -4.8 2.1 6.2 -1.6 8.6 8 -10 4.4 5.6 4.6 -4.4 0.8 1.3 11.2 4.5 3.9 10.5 -2.1 3.9 10.5 -2.1 3.9 0.4 -9.4 7.5 7.3 1.2 0.3 -0.1 0.2 -0.1 0.2 -0.2	N Y N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N	NKLGLLKLAAKALAAP MLTLCCHTM(+15.99)HALDV EYVGSMLAKAALKLLK LKLGLLKLAAKALVGAPA LGLPLALLMTLPFLQHA PAAAVLKLLKLAAKALLPQG VGGSLLKLVAPAAAEVLARVV KLVAPAAAEVLANKLFVPPT AAPAVVRVALKLAAKALLPGQ APAAVLKALLKLAAKALVGAAP PQGAKKLGLFDQLDKAAAPQ APAAVAKLLAKLAAKALVGAAP YGVASLAKAALKLLVAAVAPAAALP M(+15.99)LRTRKQLDKAAAAFMKLFQ QLKSARTLSAKAEELLKKLLAKKA LMESLKQLSAKAEELLKKLLAKKA LMESLKQLSAKAEELLKKLLAKKA VGSGLLAKVGVKLLKLVAPAAAEVLARVV VGSGLLAKAALKLLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLLAAKALGQPL VGGSLLAKAALKLLKLVAPAAAEVLANK NKALLVEAAPAAVLKLKLLAAKALGQPL VGGSLLAKAALKLLKLVAPAAAEVLANK QLPPMLAKAALKLLKLVAPAAAEVLANK QLPPMLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKLVAPAAAEVLANK QPPPMLAKAALKLLKAVAAPAAAALAEPQ LSDQPANAKKLGLFDQLDKAAAAFMKL DLYLLAKRVKLLKLVADINPVLAPQLN CTTGLMESLKQLTGKEAELLKKLLAAQKPDCYC AVPLLALR KKLPGLVC AELDPKVL	U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a/U10-Mri1c U10-Mri1a U20-Mri1a U20-Mri1a U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1c U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a U10-Mri1a	

7649	9	82	456.7614	2	37.19	911.5076	0.7	Ν	ALATGGGAVPV		
34503	7.4	82	457.7917	2	92.95	913.5637	5.7	N	FAGLPLLAL	U₃-Mri1a	
12271	8.2	82	475.7861	2	48.89	949.5596	-2.1	Ν	VLKAAPAPPS		
12848	8.2	82	500.2714	2	50.03	998.5284	-0.1	N	TPVAAAEVLE		
37287	8.1	81	513.3167	2	98.48	1024.6168	1.9	Ν	ESGLPLLALL	U₃-Mri1a	
11427	7.3	81	521.7634	2	46.54	1041.5032	8.8	N	WPQASGFLH		
15651	7.2	81	526.7766	2	55.26	1051.5371	1.5	N	GLMESLKQF	U ₂₀ -Mri1a	
15383	7.3	81	537.2929	2	54.79	1072.5706	0.7	N	PFLQHALTF	U₃-Mri1a	
10021	7.3	81	550.265	2	43.38	1098.5134	1.9	Ν	WYGGEVKNF		
15912	8.9	81	380.9286	3	55.69	1139.7642	-0.2	Ν	SLLAKALAKLL	U ₁₀ -Mri1a/U ₁₀ -Mri1c	
21812	8.9	81	599.3994	2	68.82	1196.7856	-1.2	N	KELAKAALKLL	U ₁₀ -Mri1a/U ₁₀ -Mri1c	
11497	9.7	81	605.3275	2	47.42	1208.6409	-0.3	N	LGPLKKPCCPGP	U ₆ -Mri1a	
12108	9.8	81	611.8544	2	48.52	1221.6968	-2	N	VVDGAPLDKPVL	U ₁₂ -Mri1a	
16633	10.6	81	624.8693	2	56.93	1247.7124	9.3	N	LVEAAAPAVLPPT	U ₁₀ -Mri1c	
12655	10.5	81	447.2577	3	49.66	1338.7395	8.7	N	VTPEVAAALENLL		
25358	11.3	81	684.4513	2	75.16	1366.8911	-2.2	N	AVSGLLAKAALKLL	U ₁₀ -Mri1a/U ₁₀ -Mri1c	
36763	10.6	81	685.9382	2	97.43	1369.8518	7.4	N	RGSLLAKAALKRS	U ₁₀ -Mri1c	
23617	10.5	81	691.385	2	72.15	1380.75	4	N	SLEVKPLDPGDLV		
17779	10.5	81	705.8885	2	58.85	1409.7554	5	N	LAVHAEPTEALLF		
33177	12.2	81	490.9716	3	90.3	1469.9004	-4.9	N	GSLLAAKALKLGCLL	U10-Mri1c	
9076	12.9	81	497 6367	3	41.2	1489 8867	1	N	KI VAAPAAEVI AI PGA	U ₁₀ -Mri1c	
9827	12.3	81	503 3124	3	42.96	1506 9133	14	N	ΚΙνΔΑΡΔΑΕΥΙΔΚΙΟ		
21791	11 3	81	505.9834	3	68.28	1514 9185	65	N	RTALKAALAELDII		
11181	12.2	81 81	513 9648	3	16.23	1538 8667	3.8	N		LL _{eo-} Mri1c	
21/66	11.2	01 01	522 6517	2	97.20	1567 0448	.7.2	N		U ₁₀ -Mri1b	
27517	12.2	01 01	780 5012	2	07.20	1577 0027	-7.5	N		Ute-Mri12/Ute-Mri1c	
37317	12.2	01	789.3012	2	90.91	1577.0027	-9.4	IN N			
27960	11.2	01	789.9000	2	80.05	1577.9320	-8.9	IN V			
42022	11.5	81	790.4496	2	100.7	1622,0002	-4.1	Y NI			
24975	12.1	81	542.3094	3	74.52	1623.9092	-1.7	IN V			
19773	13	81	573.6794	3	63.02	1718.0198	-2	Y N			
18203	14.6	81	597.7102	3	50.11	1790.1028	3.4	IN N		U ₁₀ -Mri1c	
12990	12.2	81	449.9973	4	50.26	1/95.958	1.1	N N			
13854	13.8	81	472.0482	4	51.99	1884.1594	2.2	IN N			
19683	14.6	81	655.7418	3	62.89	1964.2034	0.1	N N		U ₂₀ -IVIri1a	
19603	15.4	81	659.096	3	62.77	1974.2605	2.9	IN NI			
19/18	16.3	81	512.0857	4	62.95	2044.3135	0.1	IN NI		U ₁₀ -IVITILC	
37232	10.3	81	1025.627	2	98.38	2049.2236	7.3	IN NI			
36330	17.1	81	686.4387	3	96.47	2056.3135	-9.2	N N			
35439	16.3	81	543.5672	4	94.52	21/0.25/1	-8	N N	DGSLSKQLSAKAEELLKKLL	U ₂₀ -IVIri1a	
28594	17.9	81	488.9044	5	81.41	2439.4788	2.9	N	LSEKKNSAKAEELLKKLLAKKA	U ₂₀ -Mri1a	
28505	17.8	81	502.3054	5	81.24	2506.4668	9.5	N	EMHKQLSAKAEELLKKLLAKKA	U ₂₀ -Mri1a	
42086	19.3	81	1309.229	2	106.8	2616.4568	-4.8	N		U ₃ -Mri1a	
36437	21.8	81	674.1699	4	96.71	2692.6616	-4.1	N	VGGSLLAKAALKLLKLVAAPAAEVVYK		
36622	21.8	81	674.4127	4	97.13	2693.6279	-2.3	N N	VGGTVLAKAALKLLVKLAPAAAEVLIVIF		
28298	22	81	681.413	4	80.79	2721.6089	5.1	N	DKKGAAAAPAVAKALLKLAAKALMSKW	U ₁₀ -Mri1a	
29163	20.2	81	392.3832	/	82.75	2/39.63/	-2	N	LLMVEMLGLSAKAEELLKKLLAKKA	U ₂₀ -Mri1a	
28481	19.5	81	392.5258	7	81.19	2740.636	-2.3	N	KLQSEMRKSAKAEELLKKLLAKKA	U ₂₀ -Mri1a	
36131	22.6	81	1421.392	2	95.97	2840.7803	-3.9	N	RTLAKAALQLLKLVAAAPAQVLKGGAL	U ₁₀ -Mri1a/U ₁₀ -Mri1c	
28426	23.5	81	/18.1878	4	81.06	2868.6887	11.6	N	PAAAAAHKAAPAVAKALLKLAAKALMSKW	U ₁₀ -Mri1a	
27451	21.1	81	580.1536	5	79.16	2895.7305	0.4	N	GLMESLKQLSAKAEELLKKLLAKKRA	U ₂₀ -Mri1a	
29278	20.9	81	488.7992	6	83	2926.7629	-3.8	N	QLKHACHKKLSAKAEELLKKLLAKKA	U ₂₀ -Mri1a	
36474	23.5	81	980.5971	3	96.79	2938.7944	-8.5	N	DLKGLAKAALKLLKLVAPAAAEVLANPQL	U ₁₀ -Mri1c	
29053	23.5	81	983.9131	3	82.47	2948.7439	-8.9	N	KNNGHLAKAALKLLKAVAPAAAAALWLQP	U ₁₀ -Mri1a	
35823	24.2	81	1001.956	3	95.18	3002.8372	2.7	N	VGGSLLAKAALKLLKLVAAPAAEVLANFRV	U ₁₀ -Mri1c	
40941	24.2	81	1036.988	3	105.2	3107.916	8.6	N	KDLGLAKAALKLLKLVAPAAAEVLGEKLHK	U ₁₀ -Mri1c	
41847	23.6	81	1042.316	3	106.4	3123.9109	5.3	N	DPSLLAKAALKLLKLVANVPEVLALQLRQ	U ₁₀ -Mri1c	
24424	25	81	818.9393	4	73.55	3271.7273	0.3	N	EPAAEADKAPQGKKLGLFDQLDKAAAAFMKL	U ₁₃ -Mri1a	
9327	7.3	81	411.7447	2	41.76	821.4759	-1.2	N	AAALHVVA		
17630	6.5	81	417.2664	2	58.6	832.517	1.6	N	GLPLLALH	U₃-Mri1a	
14767	7.3	81	437.7477	2	54.07	873.4807	0.1	Ν	LDSAALATL	U ₁₉ -Mri1a	
17770	6.5	81	458.7777	2	58.83	915.5436	-3.1	N	CGARRLLK		
8579	6.5	81	470.8026	2	39.95	939.5905	0.1	N	AVPLKKVW		
34960	7.3	81	478.7957	2	93.73	955.5776	-0.6	Y	VAPLLALLM(+15.99)	U ₃ -Mri1a	
10111	6.5	81	498.267	2	43.64	994.5157	3.7	Ν	LMESLKQF	U ₂₀ -Mri1a	
7348	7.3	81	499.2816	2	36.27	996.5491	-0.6	Ν	LPDPKVLES	U ₁₂ -Mri1a	
9270	8.8	80	503.3112	2	41.63	1004.6018	6.1	Ν	KLVAAPAAAPP	U10-Mri1a/U10-Mri1c	
16977	7.2	80	510.2762	2	57.47	1018.5369	1	N	GLMESLKEL	U ₂₀ -Mri1a	
5487	7.2	80	511.774	2	31.02	1021.5345	-1	Ν	PFLQHAVPN	U₃-Mri1a	

6381	8	80	549.2908	2	34.28	1096.5664	0.6	Ν	PFLQHALTNG	U₃-Mri1a	
13192	11.2	80	617.8704	2	50.68	1233.7192	5.7	Ν	LGAPAAAAALGRPV	U ₁₀ -Mri1a	
13167	11.1	80	626.3747	2	50.63	1250.7346	0.2	Ν	GLAPAAAAALALNK	U ₁₀ -Mri1a	
19457	8.8	80	627.337	2	62.54	1252.6638	-3.4	Ν	PFLQHALTMVP	U₃-Mri1a	
20484	8.8	80	627.3531	2	66.33	1252.6816	8.1	Ν	PFLQHALTLDV	U₃-Mri1a	
14095	8.8	80	627.8455	2	53.58	1253.6768	-0.2	Ν	LTPFLQHALTN	U ₃ -Mri1a	
17787	8.8	80	627.8417	2	58.86	1253.6768	-6.3	Ν	PFLQHALTNTL	U₃-Mri1a	
22034	10.5	80	649.4125	2	68.87	1296.813	-2	Ν	VGSLLAKAALKLN	U ₁₀ -Mri1c	
14026	11.3	80	669.3553	2	53.37	1336.6987	-1.9	Ν	LDSAALATHAASLP	U ₁₉ -Mri1a	
9109	12.1	80	681.9083	2	41.26	1361.803	-0.6	Ν	KLGAAPAAAALALPQ	U10-Mri1a/U10-Mri1c	
30178	11.2	80	690.4334	2	84.96	1378.8547	-1.8	Ν	GPDGLLAKAALKLL	U ₁₀ -Mri1c	
11275	10.4	80	710.896	2	47.19	1419.7722	3.7	Ν	VLHATTSHTLVLE		
22342	10.4	80	740.902	2	69.61	1479.7908	-0.8	Ν	PFLQHALTNLPVM	U ₃ -Mri1a	
25405	11.2	80	495.6567	3	75.23	1483.949	-0.4	Ν	VGPKYLAKAALKLL	U10-Mri1a/U10-Mri1c	
18302	10.4	80	745.8246	2	60.99	1489.636	-0.9	Y	TMLPM(+15.99)M(+15.99)M(+15.99)CSALTL		
22138	11.2	80	765.3831	2	69.13	1528.7507	0.6	Ν	LESEAAELETDPLL		
32996	12	80	514.9934	3	89.87	1541.9578	0.5	Y	M(+15.99)VVGSLLAKAALKLL	U ₁₀ -Mri1c	
13848	12	80	810.0093	2	51.98	1618.0002	2.3	Ν	KGFSMLAKAALKLLK	U ₁₀ -Mri1a	
15181	14.4	80	466.3032	4	54.47	1861.1763	4	Ν	LKLLGLKLAPAAEVLANK	U ₁₀ -Mri1c	
18290	12.7	80	932.0182	2	60.34	1862.0012	11.1	Ν	VTFLELQHALTMLSFL	U ₃ -Mri1a	
42105	17.5	80	782.4635	3	106.8	2344.3591	4.1	Ν	LPLAVGLALLMTLPFLQHALVD	U ₃ -Mri1a	
42130	17.6	80	787.1362	3	106.9	2358.3748	5	Ν	LPLALGLALLMTLPFLQHALVD	U ₃ -Mri1a	
29144	17.6	80	488.9004	5	82.98	2439.4788	-5.4	Ν	SLQKKDSAKAEELLKKLLAKKA	U ₂₀ -Mri1a	
28640	18.3	80	511.3092	5	82.46	2551.5034	2.5	Ν	MEAKAPALSAKQWQLKKLLAKKA	U ₂₀ -Mri1a	
17765	18.4	80	519.0859	5	58.82	2590.394	-0.4	Ν	DKPRLLGLDKFDQLDKAAAAFMK	U ₁₃ -Mri1a	
27820	21.7	80	873.1839	3	79.84	2616.5398	-3.8	Ν	DKALDLAAAAAPAVAKLLKLAAKALPC	U ₁₀ -Mri1a	
25684	20.1	80	561.7057	5	76.72	2803.4875	1.7	Ν	TNQPRPMKLGLFDQLDKAAAAFMLK	U ₁₃ -Mri1a	
41184	23.3	80	569.3648	5	105.4	2841.7781	3.4	Ν	VGSGLLAKAALKLLKLVAAPAAEVLAKVQ	U ₁₀ -Mri1c	
41846	22.4	80	715.4533	4	106.4	2857.7554	10.1	Y	KNALLVEAAVVLLKLVAAPAAM(+15.99)VLAVVR	U ₁₀ -Mri1c	
36593	21.5	80	1470.894	2	97.07	2939.8235	-17	Ν	RRERKAALKLLKLVAPAAAEVLASRLP	U ₁₀ -Mri1c	
27165	24	80	752.2055	4	78.63	3004.7986	-1.9	Ν	GFKSMLAKAALKLLKAVALHLAAAAAPTTK	U ₁₀ -Mri1a	
41889	24.7	80	1007.93	3	106.5	3020.8364	-23	Ν	HTGSLLAVVSLLLLKLVAPAAAEVLAGGKLP	U ₁₀ -Mri1c	
32920	24.1	80	1016.271	3	89.75	3045.7913	0	Ν	LKGDALAKLGRTLLKAEVPTVAAALENKVG	U ₁₀ -Mri1b	
32073	24	80	795.9706	4	88.38	3179.8313	7	Ν	PSANAGLMESLKQLASKAEELLKKLLAKKA	U ₂₀ -Mri1a	
30769	23.2	80	815.1953	4	86.04	3256.7542	-0.7	Ν	PQGAKKLGLFDQLDKAAAAFMKLEFLRNH	U ₁₃ -Mri1a	
38887	26.3	80	1125.371	3	101.4	3373.095	-1.5	Ν	VGGSLLAKAALKLLKLVAAPAAEVLANKLKQKF	U ₁₀ -Mri1c	
29204	7.2	80	426.7814	2	82.84	851.548	0.2	Ν	VGAVPLLAL	U ₃ -Mri1a	
8006	6.4	80	451.2971	2	39.32	900.5797	-0.1	Ν	LPVAKKVF		
15603	8	80	500.7789	2	55.16	999.5423	1	Ν	LECPGLKAGL		

Supplementary Figure S1. Integrative strategy used for the sequencing of U₁₇-MYRTX-Mri1b. Edman degradation of U17-MYRTX-Mri1b yielded two fragments in equal amount probably due to cleavage. These two partial Edman sequences were searched against the transcriptome database. This resulted in three hits (i.e. CL3004Contig1 1, CL1211Contig1 1 and TRINITY DN10022 c2 g12 i10 1) encoding the same peptide sequence. Further LC-MS/MS analysis of an RP-HPLC fraction containing U₁₇-MYRTX-Mri1b has generated fragmentation MS spectra of the peptide precursor m/z of 687.08 (z=4). Note that leucine and isoleucine residues cannot be distinguished on the basis of m/z. The interpretation of MS/MS data with Peaks software suggested that the N-ter residue is a pyroglutamate (pQ) explaining the raison why the N-terminal fragment of U₁₇-MYRTX-Mri1b was not sequenced through Edman degradation. The calculated mass of the sequence pQIVWVPCNPRSKKTDDAGICRNTY is consistent with the measured mass using Q-Exactive Plus mass spectrometer.

Toxin	Contig_name	TPM
U ₁₀ -Myrmicitoxin-Mri1a	CL4Contig1_1	193,522
U ₁₀ -Myrmicitoxin-Mri1c	TRINITY_DN10134_c4_g1_i2_1	143,717
	TRINITY_DN88_c0_g1_i1_1	55,388
II Murminitovin Mrila	TRINITY_DN9765_c0_g4_i2_1	21,514
O ₃ -myrmicitoxin-mirra	TRINITY_DN2643_c0_g2_i1_1	1,937
	CL82Contig3_1	93
	TRINITY_DN9416_c1_g1_i1_1	29,959
U ₂₀ -Myrmicitoxin-Mri1a	CL1Contig199_2	4,881
	TRINITY_DN9416_c1_g1_i2_1	2,626
	CL33Contig2_1	2,818
U ₁₃ -Myrmicitoxin-Mri1a	TRINITY_DN10038_c6_g3_i3_1	5,595
	TRINITY_DN10038_c6_g3_i6_1	5,771
U ₁₈ -Myrmicitoxin-Mri1a	TRINITY_DN9460_c2_g2_i1_1	9,359
	TRINITY_DN10131_c4_g16_i3_1	3,380
U ₁₂ -Myrmicitoxin-Mri1a	CL8Contig5_1	4,809
	CL8Contig4_1	734
U ₁₀ -Myrmicitoxin-Mri1b	CL1636Contig1_2	7,623
II. Murmicitovin Mrila	TRINITY_DN4219_c0_g1_i1_1	1,678
06-Myninettoxin-Minia	TRINITY_DN4685_c0_g1_i1_1	3,618
U ₁₉ -Myrmicitoxin-Mri1a	TRINITY_DN3084_c0_g1_i5_1	4,380
	CL291Contig1_1	264
	TRINITY_DN10022_c2_g12_i11_1	905
II Murmicitovin Mrila	TRINITY_DN10022_c2_g12_i2_1	1,144
O [7-1vi yi menoxin-wii i a	TRINITY_DN10022_c2_g12_i14_1	971
	TRINITY_DN10022_c2_g12_i4_1	683
	TRINITY_DN10022_c2_g12_i1_1	390
	CL3004Contig1_1	337
U ₁₇ -Myrmicitoxin-Mri1b	CL1211Contig1_1	168
	TRINITY_DN10022_c2_g12_i10_1	217
U12-Myrmicitoxin-Mri1b	CL899Contig1_1	178

Table S4. Identified peptide toxin transcripts expressed in the venom transcriptome of *Manica rubida*.

Fraction	Peptide	5 min	1 h	24 h
F 26	Fragment (U ₁₃ -MYRTX-Mri1a)	PPP	PPP	DDD
F 30	U ₂₀ -MYRTX-Mri1a	PPP	PPP	DDD
F 31	U ₂₀ -MYRTX-Mri1a, U ₁₃ -MYRTX-Mri1a	PPP	PPP	DPN
F 32	U10-MYRTX-Mri1a, U13-MYRTX-Mri1a	PPP	PPP	DDD
F 33	U ₁₀ -MYRTX-Mri1a	NNN	PPP	DDD
F 34	U ₁₀ -MYRTX-Mri1a	PPP	PPP	DDD
F 35	U10-MYRTX-Mri1a, U10-MYRTX-Mri1b	PPP	PPP	DDD
F 36	U ₁₀ -MYRTX-Mri1b, U ₁₀ -MYRTX-Mri1c	NPP	PPP	DDD
F 37	U ₁₀ -MYRTX-Mri1c	PPN	PPN	DDD
F 38	U ₁₀ -MYRTX-Mri1c	PPP	PPP	DDD
F 39	U ₁₀ -MYRTX-Mri1c	PPP	PPP	DDD
F 40	U ₁₀ -MYRTX-Mri1c	PPP	PPP	DDD
F 41	U ₁₀ -MYRTX-Mri1c	PPP	PPP	DDD
F 43	U ₃ -MYRTX-Mri1a, unidentified protein (MW >10KDa)	PPP	PPP	DDD

Table S5. Insecticidal activity of *Manica rubida* venom fractions on blowflies 5 min, 1 h and 24 h post injection. Each fraction was injected into three flies.

N = normal, P = paralyzed, D = dead

Supplementary Figure S2. *De novo* structure prediction of insecticidal myrmicitoxins of *M. rubida* venom. These peptides are thought to be dominated by an amphiphilic and polycationic α -helix. Secondary structure prediction was performed on the PepFold3 server.
Supporting Information for Publication

Title of Paper

Myrmicine ant venoms: first insights into their peptidic diversity.

Authors:

Valentine Barassé^{1*}, Nathan Téné¹, Christophe Klopp², Niklas Tysklind⁴, Hadrien Lalägue⁴, Jérôme Orivel⁴, Valérie Troispoux⁴, Frédérick Petitclerc⁴, Martin Kenne³, Maurice Tindo³, Michel Treilhou¹, Elsa Bonnafé^{1#}, Axel Touchard^{4#}

Affiliations:

- ¹ EA-7417, Institut National Universitaire Champollion, Place de Verdun, 81012 Albi, France ; <u>nathan.tene@univ-jfc.fr</u> (N.T.) ; <u>elsa.bonnafe@univ-jfc.fr</u> (E.B.) ; <u>michel.treilhou@univ-jfc.fr</u> (M.T.)
- ² Unité de Mathématique et Informatique Appliquées de Toulouse, UR0875, INRA Toulouse, Castanet-Tolosan, France ; <u>christophe.klopp@inra.fr</u> (C.K.)
- ³ Laboratory of Animal Biology and Physiology, Faculty of Science, University of Douala, Cameroon, P.O.Box. 24157 Douala, Cameroon; <u>tindodouala@yahoo.com</u> (M.T.); <u>medoum68@yahoo.fr</u> (M.K.)
- ⁴ CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRA, Université des Antilles, Université de Guyane, 97310 Kourou, France; <u>axel.touchard2@gmail.com</u> (A.T); <u>niklas.tysklind@ecofog.gf</u> (N.T.); <u>hadrien.lalague@ecofog.gf</u> (H.L.); <u>jerome.orivel@ecofog.gf</u> (J.O.); <u>valerie.troispoux@ecofog.gf</u> (V.T.); <u>frederick.petitclerc@ecofog.gf</u> (F.P.)
- [#] The authors contributed equally to this study.

Corresponding author:

• Valentine Barassé: EA-7417, Institut National Universitaire Champollion, Place de Verdun, 81012 Albi, France. Phone: +(33)5 63 48 17 00. Email: <u>valentine.barasse@gmail.com</u>

Table of Contents

Figure S1: Total ion chromatogram (TIC) of crude venom and venom after hexanic extraction from *Solenopsis* saevissima. S17

Supplementary Table I: Source and composition of ant venom samples used for proteomic analyses.	S3
Supplementary Table II: Source and composition of ant tissue samples used for transcriptomic analyses.	S3
Supplementary Table III : Peptide mass fingerprinting of <i>Tetramorium africanum</i> venom.	S4
Supplementary Table IV : Peptide sequences in the venom of <i>Tetramorium africanum</i> .	S6
Supplementary Table V : Peptide mass fingerprinting of Stenamma debile venom.	S7
Supplementary Table VI : Peptide sequences in the venom of <i>Stenamma debile</i> .	S8
Supplementary Table VII : Peptide mass fingerprinting of Daceton armigerum crude venom.	S8
Supplementary Table VIII : Peptide sequences in the venom of Daceton armigerum.	S9
Supplementary Table IX : Peptide mass fingerprinting of Pogonomyrmex californicus venom.	S9
Supplementary Table X : Peptide sequences in the venom of <i>Pogonomyrmex californicus</i> .	S11
Supplementary Table XI : Peptide mass fingerprinting of Myrmica ruginodis venom.	S12
Supplementary Table XII : Peptide sequences in the venom of Myrmica ruginodis.	S13
Supplementary Table XIII : Mass fingerprinting of Solenopsis saevissima venom after hexanic extraction.	S15
Supplementary Table XIV : Venom glands RNA sequencing data.	S16
Supplementary Table XV: Addressing table of major contigs expressed by <i>Myrmica ruginodis</i> venom glands.	S18
Supplementary Table XVI : Addressing table of major contigs expressed by Tetramorium africanum venom gla	ands.
	S23
Supplementary Table XVII: Addressing table of major contigs expressed by Pogonomyrmex californicus ve	enom
glands.	S26

Supplementary Table XVIII: Addressing table of major contigs expressed in *Daceton armigerum* venom glands.

S38

Supplementary Table I: Source and composition of ant venom samples used for proteomic analyses.

Species	Collection sites	# Venom reservoirs	Proteomic analysis
Totuguronium ofuiscum	Mananaola Comoroon	52 venom sacs	Mass profiling
Tetrumorium ajricanum	Manengole, Cameroon	50 venom sacs	MS/MS
Dacaton annicomum	Kourou French Cuwona	22 venom sacs	Mass profiling
Duceion urmigerum	Rourou, French Guyana	24 venom sacs	MS/MS
Changement debile	Lo Croz Eronco	22 venom sacs	Mass profiling
Stenummu ueotte	Le Grez, France	12 venom sacs	MS/MS
Decouvery manage californians	Tompo Arizona (USA)	10 venom sacs	Mass profiling
Pogonomyrmex cuijornicus	Tempe, Arizona (USA)	11 venom sacs	MS/MS
Columnia comissiuma	Kourou Eronch Currence	31 venom sacs	Mass profiling
Solenopsis suevissimu	Kourou, French Guyana	32 venom sacs	MS/MS
Mamming maring dis		28 venom sacs	Mass profiling
	Lacaune, France	25 venom sacs	MS/MS

Supplementary Table II: Source and composition of ant tissue samples used for transcriptomic analyses.

Species	Sample composition	
Myrmica ruginodis	100 venom apparatus	
Pogonomyrmex californicus	70 venom apparatus	
Stenamma debile	10 ants 130 venom apparatus	
Solenopsis saevissima		
Daceton armigerum	91 venom apparatus	
Tetramorium aculeatum	100 venom apparatus	
Tetramorium africanum	100 venom apparatus	

Retention Time (min)	Mass (Da)	Relative abundance (%)	Temporary Name	Peptide Toxin
1.84	2753.19	0.14	Ta-2753	
2.3	2120.50	0.46	Ta-2121	
2.33	1735.84	0.08	Ta-1736	
11.89	788.41	0.18	Ta-788	U2-MYRTX-Ta1a (cleaved)
11.89	1000.49	0.31	Ta-1001	U2-MYRTX-Ta1a
14.3	757.94	0.04	Ta-758	
14.66	2070.07	0.01	Ta-2070	U7-MYRTX-Ta1a
15.56	1634.90	0.34	Ta-1635	U6-MYRTX-Ta1a
15.56	3119.13	0.16	Ta-3119	
16.11	1367.77	0.18	Ta-1368	U24-MYRTX-Ta1a
16.51	1557.86	0.32	Ta-1558	U ₃ -MYRTX-Ta1a (cleaved)
17.84	1979.95	0.69	Ta-1980	U7-MYRTX-Ta1b
17.84	2362.08	0.26	Ta-2362	
18.3	2640.35	0.58	Ta-2640	U17-MYRTX-Ta1a
18.4	1397.65	0.85	Ta-1398	U22-MYRTX-Ta1a
19.31	1431.25	0.47	Ta-1431	
19.74	2639.38	0.03	Ta-2639	U17-MYRTX-Ta1d
20.14	2768.56	0.29	Ta-2769	U17-MYRTX-Ta1b
20.91	3030.61	0.31	Ta-3031	U17-MYRTX-Ta1c
21.44	2839.83	0.23	Ta-2840	
22.11	921.55	0.77	Ta-922	U14-MYRTX-Ta1a
23.16	2708.43	0.11	Ta-2708	U25-MYRTX-Ta1a
23.16	4017.12	4.36	Ta-4017	U11-MYRTX-Ta1a
24.39	1934.01	0.22	Ta-1934	U3-MYRTX-Ta1b (cleaved)

Supplementary Table III : Peptide mass fingerprinting of *Tetramorium africanum* venom. List of peptide masses detected through LC–MS using an LCQ-ion trap Advantage mass spectrometer.

24.68	1816.03	0.13	Ta-1816	U1-MYRTX-Ta1a (oxidized)
26.21	1948.01	0.18	Ta-1948	U3-MYRTX-Ta1a (cleaved)
26.86	2359.36	23.13	Ta-2359	M-MYRTX-Ta1a
27.13	1800.03	12.32	Ta-1800	U1-MYRTX-Ta1a
28.42	2303.18	0.16	Ta-2303	U21-MYRTX-Ta1b (cleaved)
29.74	743.46	1.91	Ta-744	U3-MYRTX-Ta1b (cleaved)
30.62	1164.71	0.07	Ta-1165	U26-MYRTX-Ta1a
30.85	2791.39	0.07	Ta-2791	U21-MYRTX-Ta1b (oxidized)
31.47	2431.31	0.27	Ta-2431	U3-MYRTX-Ta1a (cleaved)
32.48	2531.38	2.22	Ta-2531	U3-MYRTX-Ta1b (cleaved)
32.7	3032.53	7.62	Ta-3033	U21-MYRTX-Ta1b (cleaved)
33.54	2544.39	2.31	Ta-2544	U3-MYRTX-Ta1a (cleaved)
33.68	2775.39	6.88	Ta-2775	U21-MYRTX-Ta1b
33.91	2867.19	0.27	Ta-2867	
34.26	2106.05	0.05	Ta-2106	U21-MYRTX-Ta1a (cleaved)
35.45	856.54	0.39	Ta-857	U3-MYRTX-Ta1b (cleaved)
35.57	2462.22	0.40	Ta-2462	U21-MYRTX-Ta1a (cleaved)
36.24	3299.79	2.29	Ta-3300	U3-MYRTX-Ta1c
36.61	2849.41	12.92	Ta-2849	U21-MYRTX-Ta1a
37.18	3337.84	1.83	Ta-3338	U3-MYRTX-Ta1d
37.62	2251.11	0.21	Ta-2251	U23-MYRTX-Ta1a
39.22	969.62	0.88	Ta-970	U3-MYRTX-Ta1a (cleaved)
40.05	1273.84	0.67	Ta-1274	U3-MYRTX-Ta1d (cleaved)
45.37	3255.83	4.38	Ta-3256	U3-MYRTX-Ta1b
46.24	3269.84	7.05	Ta-3270	U ₃ -MYRTX-Ta1a

Supplementary Table IV : Peptide sequences in the venom of Tetramorium africanum. PTMs. post-translational modifications. TPMs. transcripts
per millions. "*" denotes C-terminal amidation. "\$" indicates the peptide was not validated through proteomics. "b" The TPM value is the sum
of the frequency from more than one assembled contig encoding the same transcript.

Toxin name	Mass (Da)	TPMs	Sequence	PTMs
M-MYRTX-Ta1a	2359.36	46,405.86	FKIPWGKIKDFVTGGIKEVAK*	
U1-MYRTX-Ta1a	1800.03	149,799.21	GLKEIWEKIKQKLGM	
U2-MYRTX-Ta1a	1000.49	113,947.14	DPPGGFVGTR*	
U3-MYRTX-Ta1a	3269.84	9,082.74	LAPIFALLLLSGLFSLPALQHYIEKNYIN*	
U3-MYRTX-Ta1b	3255.83	-	LAPIFALLLLSGLFSLPALQHYVEKNYIN*	
U ₃ -MYRTX-Ta1c	3299.79	11,100.69	IAPILALGLLSAFSAIPFIHHWATGGKPHHE*	
U3-MYRTX-Ta1d	3337.84	55,025.36	IAPILALPLLAGLFSLPFVHHWATGGKPHHE*	
U4-MYRTX-Ta1a	1500.76 ξ	2,715.685	GCSVNRRRQGLCR*	1 S-S
U6-MYRTX-Ta1a	1634.90	1,792.98	FHGPCPKIPGKIIKC	1 S-S
U7-MYRTX-Ta1a	2070.07	1,937.06	AINCRRFPFHPKCRGISA	1 S-S
U7-MYRTX-Ta1b	1979.95	4,031.09	DVNCEITPFHPKCRGVAP	1 S-S
U11-MYRTX-Ta1a	4017.12	7,902.77	GKEKDKLIECTKEMLLAAMDYAKHKIEKHLFKCK	1 S-S
U13-MYRTX-Ta1a	2488.25 ξ	4,469.8	SKIGLFDQIDKGMAWFMDLFK*	
U14-MYRTX-Ta1a	921.55	437.82	IPPAALASLA*	
U17-MYRTX-Ta1a	2640.35	1,046.62	GIINAPDRCPDGYKRAGNQCRKVI*	1 S-S
U17-MYRTX-Ta1b	2768.56	4,805.32	YIIRVPIQCPPGKVKVGNRCRIVY	1 S-S
U17-MYRTX-Ta1c	3030.61	4,352.09	GIIRIPELKCPDGYKKDALGVCREIFT*	1 S-S
U17-MYRTX-Ta1d	2639.38	8,877.64	SVINVPIQCPPGTIQVGKRCRETF	1 S-S
U17-MYRTX-Ta1e	2716.54 ξ	1,508.21	NIIKVPCRAGYRKINGVCRKIYR*	1 S-S
U21-MYRTX-Ta1a	2849.41	6,704.71	VVSMDDINKWAQEMLSKLNELMKQ	
U21-MYRTX-Ta1b	2775.39	-	VVSMDDINKWAQEALSKLNEVMKQ	
U22-MYRTX-Ta1a	1397.65	42,166.97	HVGLCHFKICNM*	1 S-S

U23-MYRTX-Ta1a	2251.11	3,921.32	KDWVEICEILPPICDDVGPI	1 S-S
U24-MYRTX-Ta1a	1367.77	678.29	TQSKNPDVVIRL*	
U25-MYRTX-Ta1a	2708.43	2,351.59	WRVPWRDIITKGSKMAYEMSKK*	
U26-MYRTX-Ta1a	1164.71	337.17	QLPTIFVPRL*	Pyro-Q
U27-MYRTX-Ta1a	2228.97 ξ	3,923.8	WREICKMFPYYEGCHRD*	1 S-S

Supplementary Table V : Peptide mass fingerprinting of *Stenamma debile* venom. List of peptide masses detected through LC–MS using an LCQ-ion trap Advantage mass spectrometer.

Retention time (min)	Mass (Da)	Relative abundance (%)	Temporary name	Peptide toxin
7.06	3050.49	4.00	Sd-3051	U17-MYRTX-Sd1b
12.01	3021.59	8.17	Sd-3022	U17-MYRTX-Sd1a
12.97	932.57	4.08	Sd-933	
15.3	744.32	0.34	Sd-744	
16.62	682.1	0.63	Sd-682	
16.64	2665.35	0.24	Sd-2666	
18.93	1021.47	9.25	Sd-1022	
18.93	3179.59	16.57	Sd-3180	U29-MYRTX-Sd1a
21.09	2623.99	0.44	Sd-2624	
22.32	895.21	0.20	Sd-895	
24.05	2606.46	0.86	Sd-2607	U31-MYRTX-Sd1a
27.68	879.23	1.69	Sd-879	
28.51	1810.94	4.46	Sd-1811	U28-MYRTX-Sd1a (Oxidized)
29.53	786.28	0.94	Sd-787	
31.75	1519.88	7.05	Sd-1520	U30-MYRTX-Sd1a
32.29	2513.14	1.74	Sd-2492	

32.47	1793.94	3.55	Sd-1794	U28-MYRTX-Sd1a (Pyro-Q/Oxidized)
33.41	863.15	9.79	Sd-863	U28-MYRTX-Sd1a (cleaved/Pyro-Q)
35.79	1794.94	18.85	Sd-1795	U ₂₈ -MYRTX-Sd1a
39.77	1777.94	7.12	Sd-1778	U28-MYRTX-Sd1a (Pyro-Q)

Supplementary Table VI : Peptide sequences in the venom of *Stenamma debile*. PTMs. post-translational modifications. TPMs. transcripts per millions (sum of more than one transcript). *"*"* C-terminal amidation.

Toxin name	Mass (Da)	Sequence	PTMs
U17-MYRTX-Sd1b	3050.49	YIIDAPSRKCPEGSRRSTQGECRTTSR*	1 S-S
U17-MYRTX-Sd1a	3021.59	NIITVPERPCPSGQRKDSRGKCRQVLS	1 S-S
U28-MYRTX-Sd1a	1793.93	QFPMDMLIAGAKKLFS*	
U29-MYRTX-Sd1a	3179.60	ETTALATAEATPEATAEATPKATAKAYQPIY	
U ₃₀ -MYRTX-Sd1a	1519.88	TISYLRGLLPLFQ	
U31-MYRTX-Sd1a	2606.46	ANIALEAANKMGPRIAEKLVEKLQ	

Supplementary Table VII : Peptide mass fingerprinting of *Daceton armigerum* crude venom. List of peptide masses detected through LC–MS using an LCQ-ion trap Advantage mass spectrometer.

Retention time (min)	Mass (Da)	Relative abundance (%)	Temporary name	Peptide toxin
17.01	8251.52	8.53	Da-8252	
17.57	8230.54	26.08	Da-8231	U ₃₂ -MYRTX-Da1b
17.88	8219.58	20.84	Da-8220	U32-MYRTX-Da1a/b
18.28	8208.63	14.77	Da-8209	U32-MYRTX-Da1a
21.54	9415.76	7.59	Da-9416	
21.87	9161.33	22.19	Da-9161	U32-MYRTX-Da1c

Supplementary Table VIII : Peptide sequences in the venom of *Daceton armigerum*. PTMs. post-translational modifications. TPMs. transcripts per millions. "^b" The TPM value is the sum of the frequency from more than one assembled contig encoding the same transcript.

Toxin name	Mass (Da)	TPMs	Sequence	Features
U32-MYRTX-Da1a	8208.63	141,219.69 ^b	GKEKEAFKAQLKECVKAGAKYLSHKVSKALYALIDKI	Homodimer
U32-MYRTX-Da1b	8230.54	7,442.10	GKEKEAFKAQLRECVKAGAKYLSHKLSKAMNALIDKI	Homodimer
U32-MYRTX-Da1c	9161.33	6,313.82	GKNKEALKAQLKECVKAVEKYITDKISKKVLQAINALIDKI	Homodimer
Um MVPTY Dala/b	8210 58	141,219.69 ^b	GKEKEAFKAQLKECVKAGAKYLSHKVSKALYALIDKI	Hotorodimor
U_{32} -1VIIKIA-Dala/D	0219.30	7,442.10	GKEKEAFKAQLRECVKAGAKYLSHKLSKAMNALIDKI	Tieterouinier

Supplementary Table IX : Peptide mass fingerprinting of *Pogonomyrmex californicus* venom. List of peptide masses detected through LC–MS using an LCQ-ion trap Advantage mass spectrometer.

Retention time	Mass (Da)	Relative abundance (%)	Temporary name	Pantida tovin
(min)	W1855 (Da)	Relative abundance (70)	Temporary name	I epitue toxin
11.77	2489.40	0.16	Pc-2489	U ₁₇ -MYRTX-Pc1c
12.31	2514.17	0.12	Pc-2516	U17-MYRTX-Pc1c (+ 26 Da)
12.82	3292.92	0.04	Pc-3292	U17-MYRTX-Pc1b (Oxidized)
12.94	2112.12	0.02	Pc-2112	
13.41	3317.53	0.03	Pc-3319	U17-MYRTX-Pc1b (Oxidized; +26 Da)
14	3275.53	0.91	Pc-3278	U17-MYRTX-Pc1b
14.55	3301.53	0.68	Pc-3303	U17-MYRTX-Pc1b (+26 Da)
15.16	3562.92	0.23	Pc-3563	U17-MYRTX-Pc1a
15.71	3588.92	0.07	Pc-3591	U17-MYRTX-Pc1a (+26 Da)
16.62	2053.08	0.18	Pc-2053	
19.15	5449.6	0.11	Pc-5450	
19.15	6086.44	0.27	Pc-6086	

U ₁₈ -MYRTX-Pc1a	Pc-5636	0.09	5633.46	19.66
	Pc-5677	0.08	5676.72	19.66
	Pc-6071	0.36	6070.6	19.91
	Pc-5660	0.30	5660.36	20.21
	Pc-1826	0.03	1825.14	22.94
	Pc-1947	0.09	1946.88	23.66
U3-MYRTX-Pc1a (cleaved)	Pc-1981	0.07	1980.02	24.12
	Pc-3249	1.75	3249.90	28.7
U ₃₅ -MYRTX-Pc1c	Pc-3110	3.79	3109.80	29.37
U ₃₄ -MYRTX-Pc1a (cleaved)	Pc-3262	0.42	3260.03	30.29
U35-MYRTX-Pc1a (cleaved/Oxidized)	Pc-3468	1.51	3464,80	32.2
U ₃₅ -MYRTX-Pc1a (cleaved)	Pc-3391	8.85	3390.78	32.74
U ₃₅ -MYRTX-Pc1a	Pc-3233	34.58	3235.12	32.94
U ₃₅ -MYRTX-Pc1b	Pc-3308	4.72	3306,87	35.04
U ₃₅ -MYRTX-Pc1b (cleaved)	Pc-3151	3.96	3148,80	35.43
U ₃₄ -MYRTX-Pc1a	Pc-3462	13.85	3462,10	36.21
U3-MYRTX-Pc1b	Pc-2650	1.09	2648,49	41.74
	Pc-2800	2.69	2799.50	42.31
U3-MYRTX-Pc1a	Pc-3071	4.36	3065.74	46.18
	Pc-2050	3.38	2049.8	49.71
U ₃₃ -MYRTX-Pc1a	Pc-2065	8.80	2065,28	50.95
U ₃₃ -MYRTX-Pc1b	Pc-2056	2.40	2055,26	51.62

Supplementary Table X : Peptide sequences in the venom of *Pogonomyrmex californicus*. PTMs. post-translational modifications. TPMs. transcripts per millions. "*" C-terminal amidation. "ξ" Not validated through proteomics. "-" Not detected in the transcriptome after the final assembly. "^p" The TPM value is the sum of the frequency from more than one assembled contig encoding the same transcript.

Toxin name	Mass (Da)	TPMs	Sequence	PTMs
U3-MYRTX-Pc1a	3065.74	-	ALPALPLLALLFSLPAVQHWIEKNWIN*	
U3-MYRTX-Pc1b	2648,49	-	GLPILALFVLIPFIHHYLMEKW*	
U3-MYRTX-Pc1d	2622.44 ξ	191,922.9 2	GLPILASFVLIPFIHHYLMEKW*	
U3-MYRTX-Pc1e	3175.76 ξ	32,210.36	ALPALPFLIFLFTLPAVQHWVEKNWIN*	
U3-MYRTX-Pc1g	2832.57 ξ	15,834,74	GLPLLVFLFSLPAVQHWIEKNWIN*	
U17-MYRTX-Pc1a	3562.92	698,35	HIIQVPCLPGYVKVGKDGVCREAFKFKPGQRP*	1 S-S
U17-MYRTX-Pc1b	3275.53	1,936.25	HIIQVPCRDGYVMVNGVCREVFNEKDEE	1 S-S
U17-MYRTX-Pc1c	2488.16	-	HIIQVPCRDGYVKDNGACIPEY	1 S-S Deamidation
U18-MYRTX-Pc1a	5633,46	394.84	ENMSNRIPCTEEDIGYCFNGECFYIPAINAKGCICNKGYDGYRCQNTILD	3 S-S Dehydration
U18-MYRTX-Pc1b	5828,51 ξ	354.17	ENISNRIPCTEEYNGYCLNGECFTIGGDENMKHCVCPKEFSGERCQIRDYA	3 S-S
U33-MYRTX-Pc1a	2065.28	64,414.01	ISPLIPLISFLASLIAAIKS*	
U33-MYRTX-Pc1b	2055.26	33,954.24	ISPLISLISFLASLIAAIKS*	
U ₃₄ -MYRTX-Pc1a	3462.10	55,877.39	DSKIFRALITLGKMLLPVILPTVAEKIKEKV*	
U35-MYRTX-Pc1a	3232.71	159,799.0 7	VDFKEMMKKITPDLLEMLEDIKAKIQQ*	
U35-MYRTX-Pc1b	3306.87	-	ASVDLKELLKKITPDLLEMLDDIKAKIQQ*	
U ₃₆ -MYRTX-Pc1a	3004.61 ξ	6,004.13	VDKPGQAKEIGIFDRITELINWLVNH	

Retention time (min)	Mass (Da)	Relative abundance (%)	Temporary name	Peptide toxin
2.28	1101.64	0.15	Mru-1102	U14-MYRTX-Mru1a
2.3	2948.88	0.20	Mru-2949	
11.75	544.12	0.18	Mru-544	
15.26	2907.60	0.31	Mru-2908	
15.68	1463.85	0.61	Mru-1464	U6-MYRTX-Mru1a
16.41	2675.10	0.08	Mru-2675	
16.36	2665.65	0.07	Mru-2666	
17.38	1401.73	1.31	Mru-1402	U ₁₄ -MYRTX-Mru1c
19.12	2801.27	0.22	Mru-2801	U17-MYRTX-Mru1a
19.26	3829.77	0.24	Mru-3830	
19.26	3742.95	0.12	Mru-3743	
19.8	1430.43	0.06	Mru-1430	
19.91	1427.46	0.04	Mru-1427	
20.05	5289.26	0.14	Mru-5289	U ₁₈ -MYRTX-Mru1b
20.14	1407.46	0.08	Mru-1408	
20.77	2478.66	0.07	Mru-2479	
21.99	1389.42	0.06	Mru-1389	
22.63	1652.93	1.44	Mru-1653	U3-MYRTX-Mru1a (cleaved)
23.07	5300.32	0.92	Mru-5300	U18-MYRTX-Mru1a
23.92	4019.36	0.12	Mru-4019	
25.42	1766.01	0.33	Mru-1766	U3-MYRTX-Mru1a (cleaved)
26.64	1735.62	0.03	Mru-1736	
27.26	1124.67	0.75	Mru-1125	U14-MYRTX-Mru1b

Supplementary Table XI : Peptide mass fingerprinting of *Myrmica ruginodis* venom. List of peptide masses detected through LC–MS using an LCQ-ion trap Advantage mass spectrometer.

28.28	1813.98	0.89	Mru-1814	U ₃ -MYRTX-Mru1b (cleaved)
29.79	1914.13	0.71	Mru-1914	U14-MYRTX-Mru1d
30.71	695.26	0.63	Mru-695	
31.82	729.40	0.69	Mru-729	
32.22	1590.85	0.50	Mru-1591	U6-MYRTX-Mru1b
34.73	2884.81	1.07	Mru-2885	U10-MYRTX-Mru1a (Oxidized)
35.2	2074.40	2.80	Mru-2074	U10-MYRTX-Mru1b
35.56	2898.81	2.43	Mru-2899	U10-MYRTX-Mru1a (Oxidized/ Methylated)
36.69	2868.81	5.28	Mru-2869	U10-MYRTX-Mru1a
37	842.53	4.46	Mru-843	U ₃ -MYRTX-Mru1a (cleaved)
39.64	3286.70	1.20	Mru-3287	U13-MYRTX-Mru1a
40.51	2708.52	50.96	Mru-2709	U ₃₇ -MYRTX-Mru1a
41.02	2477.44	12.77	Mru-2477	U3-MYRTX-Mru1a
42.1	2926.62	3.39	Mru-2927	U ₃₈ -MYRTX-Mru1a (cleaved)
42.75	2735.73	1.54	Mru-2735	
44.61	2492.30	3.17	Mru-2492	U3-MYRTX-Mru1b

Supplementary Table XII : Peptide sequences in the venom of *Myrmica ruginodis*. PTMs. post-translational modifications. TPMs. transcripts per millions. "*" C-terminal amidation. "ξ" Not validated through proteomics. "-" Not detected in the transcriptome. "^þ" The TPM value is the sum of the frequency from more than one assembled contig encoding the same transcript.

Toxin name	Mass (Da)	TPMs	Sequence	PTMs
U3-MYRTX- Mru1a	2477.44	100,084.03	GLPLFALLMALPALQHYIEKKI*	
U3-MYRTX- Mru1b	2492.30	19,980.38	GLPLLALIMALPFLQHYIEKNV	

U6-MYRTX-	1463.85	2.879.34 Þ	LIGPCPKKPIGIKC	1 S-S
Mru1a	1100.00	2,07 710 1		100
U6-MYRTX-	1590.8	58,024.59	IIDPCPKIFKGLFC	1 S-S
Mru1b	107010	þ		100
U10-MYRTX-	2868.81	83.363.96	GIGKILGKVALKILKVVAPAAAEAIADKI*	
Mru1a				
U10-MYRTX-	2074.40	_	GIGKVLKNILSKLKKLLPL	
Mru1b	207 1110			
U10-MYRTX-	2812.75	1.822.750	GIGNVLAKVALKILKVVAPSAAAAIADKI*	
Mru1c	ξ	1,022,700		
U13-MYRTX-	3286 70	4 440 72 Þ	DKFGOAKKIGI FDOIDRAWAWFMKI FF*	
Mru1a	0200.70	1,110.72		
U ₁₄ -MYRTX-	1101.64	417.18	IDSKAIKSLO*	
Mru1a	1101.01	117.10		
U ₁₄ -MYRTX-	1124 67	17 118 51	IDPKVLESLL*	
Mru1b	1121.07	17,110.01		
U ₁₄ -MYRTX-	1401 73	4 544 89 Þ	IDSDALKSLOGGTV*	
Mru1c	1101.70	1,011.07		
U ₁₄ -MYRTX-	1914 13	14 22 39	INPKI WI KI FSKI FSV*	
Mru1d	1711.10	11,22.09		
U17-MYRTX-	2801 27	1 288 04	A IID A PRNCPPCHDIDH A CDCVFIFF	1 5-5
Mru1a	2001.27	1,200.04		1 5-5
U17-MYRTX-	2673.31	209 00 Þ	HIIVEPPNCPPCOKPRCNCROEV	1 5-5
Mru1b	ξ	207.00		10-0
U17-MYRTX-	2905.58	209 00 b	HIINWPIOCPPCKWRWCNRCRDWCRW	155
Mru1c	ξ	209.00 r		1 5-5
U17-MYRTX-	2946.47	510.81	HIWVPDRNCPPCORKDNHCNCRDIA	1 5-5
Mru1d	ξ	510.01		1 0-0
U17-MYRTX-	2769.38	1 1 3 9 6 3	HIIVIDKNCPPCOREDHHCHCRVI*	1 5-5
Mru1e	ξ	1,109.00		10-0

U17-MYRTX- Mru1f	3275.73 ۶	758.24	HIIVVPERPPKCPPGQERDRRGRCRMVP	1 S-S
U17-MYRTX-	3169.70	690.48	HIIVVPELQCPPGQKRDRQGRCRKVFN*	1 S-S
Mru1g U17-MYRTX-	ξ 3388.72	5 315 62	HIIVLPNRNTTNTCPPGOKKDNYGNCRKIA	1 S-S
Mru1h U18-MYRTX-	ک	0,010.02		3 S-S / 1 Pyro-
Mru1a	5300.32	2,172.43 Þ	QSHFQPCPSSHEHFCLNGECFYLAAENEIGCICPPGFQGQRCGELILD	Q
U18-MYRTX- Mru1b	5289.26	206.96	THLEPSCPPSHEGFCLNGGTCVTIAELNTYACICAPGFHGSRCETANLE	3 S-S / 1 Fucose
U18-MYRTX- Mru1c	5593.47 ع	2,172.43 ^þ	QSHFQPCPSSHEHFCLNGECFYLAAENEIGCICPPGFQGQRCGELILEYV	3 S-S
U18-MYRTX- Mru1d	6181.63 ع	1,204.75 þ	NHDPCPPQYAEALCLNGGTCFTVTIMGSDNYNCICAPGFQGWRCQEKSLDHP	3 S-S / O-
U37-MYRTX- Mru1a	ې 2708.52	7,396.18 ^þ	ADIAALIKELSEKAEEAIKKILGQE*	grycosylation

Supplementary Table XIII : Mass fingerprinting of *Solenopsis saevissima* venom after hexanic extraction. List of peptide masses detected through LC–MS using an LCQ-ion trap Advantage mass spectrometer.

Retention time (min)	Mass (Da)	Relative abundance (%)	Temporary name
21.91	3162.78	0.45	Ss-3163
25.24	4993.96	< 0.01	Ss-4994
27.21	2361.08	1.25	Ss-2361
30.85	3866.08	1.55	Ss-3866
30.85	3737.48	0.22	Ss-3738
40.29	4634.6	4.95	Ss-4635
41.98	4979.44	1.53	Ss-4979
47.95	253.00	8.48	Alkaloid1

49.23	279.22	81.56	Alkaloid2

Supplementary Table XIV : Venom glands RNA sequencing data.

Species	Raw reads	Assembler	Contigs	Mean length (bp)
Muuniaa musimadia	70 796 760	Trinity	27,951	2,069
Myrmicu ruginouis	79,780,762	Oases	16,066	2,581
Decetor employment	10 200 066	Trinity	28,581	1,662
Duceton urmigerum	19,309,000	Oases	13,701	2,050
De contempor californicas		Trinity	32,277	1,341
Pogonomyrmex cuijornicus	03,930,130	Oases	25,722	1,335
Changement debile	74 247 (0(Trinity	48,353	2,804
Stenummu deblie	74,247,606	Oases	25,710	2,995
Totugurouisun africansun	92 OFF 072	Trinity	44,075	1,524
1etramorium africanum	62,055,072	Oases	21,077	1,907

Figure S1: Total ion chromatograms (TIC) of crude venom (**A**) and venom after hexanic extraction (**B**) from *Solenopsis saevissima*. Peptides were eluted through RP-HPLC on a C18 column using a linear H₂O/ACN gradient at a flow rate of 250 μ L.min⁻¹.

Contig Name	TPMs	Contig ORF	Seq ID Name	E-value	Function
CL1068Contig1_1	2337.68				
CL1111Contig1_1	100,084.41		U10-MYRTX-Mru1b		Venom peptide
CL1186Contig1_1	4,286.44	CL1186Contig1_1_1	sp Q962U0 RL13A_SPOFR 60S ribosomal protein L13a OS=Spodoptera frugiperda OX=7108 GN=RpL13A PE=2 SV=1	4.08E-107	Translation
CI 1220Contig1 1	844.02	CL1339Contig1_1_2	sp Q8BT14 CNOT4_MOUSE CCR4-NOT transcription complex subunit 4 OS=Mus musculus OX=10090 GN=Cnot4 PE=1 SV=2	6.81E-127	Transcription
CE1339Contigr_1	044.92	CL1339Contig1_1_4	sp Q68KK0 PA1_SOLIN Phospholipase A1 OS=Solenopsis invicta OX=13686 PE=1 SV=1	1.14E-71	Venom allergen
CL181Contig1_1	10,776.66	CL181Contig1_1_3	sp Q9UL36 ZN236_HUMAN Zinc finger protein 236 OS=Homo sapiens OX=9606 GN=ZNF236 PE=2 SV=2	0.000193	Transcription
CL1902Contig1_1	1,137.65				
CL1Contig401_1	950.32				
CI 1Cantia/24_1	719.57	CL1Contig424_1_4	sp P98165 VLDLR_CHICK Very low-density lipoprotein receptor OS=Gallus gallus OX=9031 GN=VLDLR PE=1 SV=1	3.16E-16	Metabolism
CLICOntig424_1		CL1Contig424_1_6	sp P28175 LFC_TACTR Limulus clotting factor C OS=Tachypleus tridentatus OX=6853 PE=1 SV=1	4.36E-33	Host Defense
CL1Contig49_1	605.99	CL1Contig49_1_1	sp O62589 GD_DROME Serine protease gd OS=Drosophila melanogaster OX=7227 GN=gd PE=1 SV=2	2.38E-29	Metabolism
		CL3021Contig1_1_3	sp Q02241 KIF23_HUMAN Kinesin-like protein KIF23 OS=Homo sapiens OX=9606 GN=KIF23 PE=1 SV=3	3.11E-8	Metabolism
CL3021Contig1_1	996.04	CL3021Contig1_1_6	sp Q963B7 RL9_SPOFR 60S ribosomal protein L9 OS=Spodoptera frugiperda OX=7108 GN=RpL9 PE=2 SV=1	3.62E-113	Translation
		CL3021Contig1_1_6	sp Q9VFE6 RRP15_DROME RRP15-like protein OS=Drosophila melanogaster OX=7227 GN=CG3817 PE=1 SV=1	5.86E-33	RNA Maturation
CL3151Contig1_1	4476.93		U14-MYRTX-Mru1c		Venom peptide
CL3360Contig1_1	5,239.96	CL3360Contig1_1_2	sp P15357 RS27A_DROME Ubiquitin-40S ribosomal protein S27a OS=Drosophila melanogaster OX=7227 GN=RpS27A PE=1 SV=2	7.84E-82	Translation
CL4015Contig1_1	1,349.14	CL4015Contig1_1_4	sp P29520 EF1A_BOMMO Elongation factor 1-alpha OS=Bombyx mori OX=7091 PE=2 SV=1	0	Translation
CL4093Contig1_1	119,676.43				

Supplementary Table XV: Addressing table of major contigs expressed by *Myrmica ruginodis* venom glands.

CL410Contig1_1	2,083.71	CL410Contig1_1_1	sp Q8TGM7 ART2_YEAST Putative uncharacterized protein ART2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) OX=559292 GN=ART2 PE=5 SV=1	1.96E-14	
CL4476Contig1_1	9,205.87	CL4476Contig1_1_5	sp P32429 RL7A_CHICK 60S ribosomal protein L7a OS=Gallus gallus OX=9031 GN=RPL7A PE=2 SV=2	2.89E-121	Translation
		CL45Contig1_1_1	sp Q3KQG9 PPAT_XENLA Testicular acid phosphatase homolog OS=Xenopus laevis OX=8355 GN=acp4 PE=2 SV=1	7.43E-21	Metabolism
	1 971 40	CL45Contig1_1_1	sp Q5BLY5 ACPH1_APIME Venom acid phosphatase Acph-1 OS=Apis mellifera OX=7460 PE=1 SV=1	1E-3	Venom allergen
CL45Contig1_1	1,8/1.42	CL45Contig1_1_2	sp A6H730 PPAP_BOVIN Prostatic acid phosphatase OS=Bos taurus OX=9913 GN=ACPP PE=2 SV=1	1.89E-6	Metabolism
		CL45Contig1_1_5	sp Q5BLY5 ACPH1_APIME Venom acid phosphatase Acph-1 OS=Apis mellifera OX=7460 PE=1 SV=1	1.21E-104	Venom allergen
CL511Contig1_1	1,112.82	CL511Contig1_1_5	sp P36362 CHIT_MANSE Endochitinase OS=Manduca sexta OX=7130 PE=2 SV=1	0	Metabolism
CL51Contig1_1	1,997.87				
CL729Contig1_1	10,516.03	CL729Contig1_1_5	sp O76756 RS8_APIME 40S ribosomal protein S8 OS=Apis mellifera OX=7460 GN=RpS8 PE=2 SV=2	1.77E-125	Translation
CL976Contig1_1	8,253.62				
k25_Locus_1189_Transcr	1,887.15	k25_Locus_1189_Transcri pt_1_1_2	sp Q95WA0 RL26_LITLI 60S ribosomal protein L26 OS=Littorina littorea OX=31216 GN=RPL26 PE=2 SV=1	5.49E-68	Translation
ipt_1_1		k25_Locus_1189_Transcri pt_1_1_5	sp Q9DA39 LFG4_MOUSE Protein lifeguard 4 OS=Mus musculus OX=10090 GN=Tmbim4 PE=2 SV=1	1.54E-53	Anti-apoptosis
k25_Locus_1941_Transcr ipt_5_1	534.93				
k25_Locus_2391_Transcr ipt_5_1	36,400.91				
k25_Locus_2822_Transcr ipt_2_1	3,894.72		U6-MYRTX-Mru1a		Venom peptide
k25_Locus_3473_Transcr ipt_1_1	2,594.72	k25_Locus_3473_Transcri pt_1_1_6	sp Q95V39 RL8_SPOFR 60S ribosomal protein L8 OS=Spodoptera frugiperda OX=7108 GN=RpL8 PE=2 SV=1	1.56E-157	Translation
k25_Locus_466_Transcri	820 (4	k25_Locus_466_Transcrip t_10_1_3	sp Q68KK0 PA1_SOLIN Phospholipase A1 OS=Solenopsis invicta OX=13686 PE=1 SV=1	1.65E-71	Venom phospholipase
pt_10_1	820.04	k25_Locus_466_Transcrip t_10_1_6	sp O95628 CNOT4_HUMAN CCR4-NOT transcription complex subunit 4 OS=Homo sapiens OX=9606 GN=CNOT4 PE=1 SV=3	9.08E-127	Transcription
k25_Locus_469_Transcri pt_10_1	1,534.73	k25_Locus_469_Transcrip t_10_1_1	sp1Q5BLY51ACPH1_APIME Venom acid phosphatase Acph-1	4.24E-6	Venom allergen

			OS=Apis mellifera OX=7460 PE=1 SV=1		
		k25_Locus_469_Transcrip t_10_1_2	sp Q5BLY5 ACPH1_APIME Venom acid phosphatase Acph-1 OS=Apis mellifera OX=7460 PE=1 SV=1	1E-3	Venom allergen
		k25_Locus_469_Transcrip t_10_1_3	sp Q3KQG9 PPAT_XENLA Testicular acid phosphatase homolog OS=Xenopus laevis OX=8355 GN=acp4 PE=2 SV=1	7.43E-21	Venom allergen
		k25_Locus_469_Transcrip t_10_1_6	sp Q5BLY5 ACPH1_APIME Venom acid phosphatase Acph-1 OS=Apis mellifera OX=7460 PE=1 SV=1	2.31E-58	Venom allergen
		k25_Locus_469_Transcrip t_10_1_6	sp Q5BLY5 ACPH1_APIME Venom acid phosphatase Acph-1 OS=Apis mellifera OX=7460 PE=1 SV=1	6.35E-26	Venom allergen
k25_Locus_688_Transcri pt_1_1	2,673.28	k25_Locus_688_Transcrip t_1_1_6	sp P09180 RL4_DROME 60S ribosomal protein L4 OS=Drosophila melanogaster OX=7227 GN=RpL4 PE=1 SV=2	9.62E-167	Translation
k31_Locus_2738_Transcr ipt_1_1	4,063.54	k31_Locus_2738_Transcri pt_1_1_6	sp Q962U1 RL13_SPOFR 60S ribosomal protein L13 OS=Spodoptera frugiperda OX=7108 GN=RpL13 PE=2 SV=1	1.24E-92	Translation
k31 Locus 303 Transcri		k31_Locus_303_Transcrip t_6_1_5	sp P36362 CHIT_MANSE Endochitinase OS=Manduca sexta OX=7130 PE=2 SV=1	4.16E-99	Metabolism
pt_6_1	2,770.05	k31_Locus_303_Transcrip t_6_1_6	sp P36362 CHIT_MANSE Endochitinase OS=Manduca sexta OX=7130 PE=2 SV=1	2.57E-72	Metabolism
k31_Locus_3464_Transcr	1,352.61	k31_Locus_3464_Transcri pt_1_1_5	sp Q38PS2 NU1M_MAMPR NADH-ubiquinone oxidoreductase chain 1 OS=Mammuthus primigenius OX=37349 GN=MT-ND1 PE=3 SV=1	1.32E-10	Metabolism
ipt_1_1		k31_Locus_3464_Transcri pt_1_1_5	sp Q70Y29 NU1M_MYRTR NADH-ubiquinone oxidoreductase chain 1 OS=Myrmecophaga tridactyla OX=71006 GN=MT-ND1 PE=3 SV=1	1.04E-19	Metabolism
k31_Locus_3573_Transcr ipt_1_1	3,781.27	k31_Locus_3573_Transcri pt_1_1_6	sp Q962R2 RS17_SPOFR 40S ribosomal protein S17 OS=Spodoptera frugiperda OX=7108 GN=RpS17 PE=2 SV=3	4.23E-35	Translation
k31_Locus_48_Transcrip t_9_1	3,645.56				
k31_Locus_750_Transcri pt_1_1	443.50	k31_Locus_750_Transcrip t_1_1_1	sp P82147 L2EFL_DROME Protein lethal(2)essential for life OS=Drosophila melanogaster OX=7227 GN=l(2)efl PE=1 SV=1	1.13E-14	
k31_Locus_795_Transcri pt_15_1	554.42	k31_Locus_795_Transcrip t_15_1_1	sp P13060 EF2_DROME Elongation factor 2 OS=Drosophila melanogaster OX=7227 GN=EF2 PE=1 SV=4	0	Translation
k31_Locus_813_Transcri	(70.20	k31_Locus_813_Transcrip t_8_1_4	sp B2D0J4 VDPP4_APIME Venom dipeptidyl peptidase 4 OS=Apis mellifera OX=7460 PE=1 SV=1	0	Peptide maturation
pt_8_1	078.38	k31_Locus_813_Transcrip t_8_1_6	sp B2D0J4 VDPP4_APIME Venom dipeptidyl peptidase 4 OS=Apis mellifera OX=7460 PE=1 SV=1	1.49E-39	Peptide maturation
k37_Locus_1036_Transcr ipt_1_1	2,033.54	k37_Locus_1036_Transcri pt_1_1_1	sp A8CAG3 RL17_PHLPP 60S ribosomal protein L17 OS=Phlebotomus papatasi OX=29031 GN=RpL17 PE=2 SV=1	1.36E-101	Translation

k37_Locus_1386_Transcr	1 001 20	k37_Locus_1386_Transcri pt_2_1_2	sp P62909 RS3_RAT 40S ribosomal protein S3 OS=Rattus norvegicus OX=10116 GN=Rps3 PE=1 SV=1	4.52E-130	Translation
ipt_2_1	1,891.30	k37_Locus_1386_Transcri pt_2_1_5	sp Q9V447 KRH2_DROME Krueppel homolog 2 OS=Drosophila melanogaster OX=7227 GN=Kr-h2 PE=1 SV=1	2.67E-61	Protein maturation
k37_Locus_1583_Transcr ipt_1_1	3,447.70	k37_Locus_1583_Transcri pt_1_1_5	sp P46782 RS5_HUMAN 40S ribosomal protein S5 OS=Homo sapiens OX=9606 GN=RPS5 PE=1 SV=4	7.48E-122	Translation
k37_Locus_263_Transcri pt 1 1	5,600.36		U14-MYRTX-Mru1c		Venom peptide
k37_Locus_35_Transcrip t_13_1	2,679.89	k37_Locus_35_Transcript _13_1_3	sp Q8TGM7 ART2_YEAST Putative uncharacterized protein ART2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) OX=559292 GN=ART2 PE=5 SV=1	1.96E-14	
k43_Locus_1312_Transcr ipt_28_1	28,412.38		U3-MYRTX-Mru1a		Venom peptide
k43_Locus_1332_Transcr ipt_1_1	1,962.86	k43_Locus_1332_Transcri pt_1_1_4	sp Q02748 IF4A_DROME Eukaryotic initiation factor 4A OS=Drosophila melanogaster OX=7227 GN=eIF4A PE=1 SV=3	0	Host Defense
k43_Locus_2044_Transcr ipt_1_1	2,787.90	k43_Locus_2044_Transcri pt_1_1_5	sp Q9U3U0 RLA0_CERCA 60S acidic ribosomal protein P0 OS=Ceratitis capitata OX=7213 GN=RpLP0 PE=3 SV=1	9.53E-160	Translation
k43_Locus_4249_Transcr ipt_1_1	2,334.73	k43_Locus_4249_Transcri pt_1_1_4	sp P55833 RS27_HOMAM 40S ribosomal protein S27 OS=Homarus americanus OX=6706 GN=RPS27 PE=3 SV=2	9.34E-36	Translation
		k43_Locus_708_Transcrip t_7_1_4	sp B2D0J4 VDPP4_APIME Venom dipeptidyl peptidase 4 OS=Apis mellifera OX=7460 PE=1 SV=1	2.31E-33	Protein maturation
k43_Locus_708_Transcri pt_7_1	443.25	k43_Locus_708_Transcrip t_7_1_5	sp B2D0J4 VDPP4_APIME Venom dipeptidyl peptidase 4 OS=Apis mellifera OX=7460 PE=1 SV=1	9.17E-134	Protein maturation
		k43_Locus_708_Transcrip t_7_1_5	sp B1A4F7 VDDP4_VESVU Venom dipeptidyl peptidase 4 OS=Vespula vulgaris OX=7454 PE=1 SV=1	6.7E-40	Protein maturation
k43_Locus_927_Transcri pt_3_1	2,244.74	k43_Locus_927_Transcrip t_3_1_6	sp P29341 PABP1_MOUSE Polyadenylate-binding protein 1 OS=Mus musculus OX=10090 GN=Pabpc1 PE=1 SV=2	0	Transcription
		k49_Locus_334_Transcrip t_10_1_1	sp Q5BLY5 ACPH1_APIME Venom acid phosphatase Acph-1 OS=Apis mellifera OX=7460 PE=1 SV=1	0.001	Venom allergen
k49_Locus_334_Transcri	2 0 4 2 0 4	k49_Locus_334_Transcrip t_10_1_2	sp Q3KQG9 PPAT_XENLA Testicular acid phosphatase homolog OS=Xenopus laevis OX=8355 GN=acp4 PE=2 SV=1	7.43E-21	Venom allergen
pt_10_1	2,043.84	k49_Locus_334_Transcrip t_10_1_3	sp Q5BLY5 ACPH1_APIME Venom acid phosphatase Acph-1 OS=Apis mellifera OX=7460 PE=1 SV=1	4.24E-6	Venom allergen
		k49_Locus_334_Transcrip t_10_1_5	sp Q5BLY5 ACPH1_APIME Venom acid phosphatase Acph-1 OS=Apis mellifera OX=7460 PE=1 SV=1	5.26E-97	Venom allergen
k49_Locus_35_Transcrip t_15_1	1,681.90	k49_Locus_35_Transcript _15_1_3	sp Q96P53 WDFY2_HUMAN WD repeat and FYVE domain-containing protein 2 OS=Homo sapiens OX=9606 GN=WDFY2 PE=1 SV=2	1.2E-136	Metabolism

k55_Locus_185_Transcri pt_38_1	30,880.37		U37-MYRTX-Mru1a		Venom peptide
k55_Locus_2820_Transcr ipt_6_1	7,813.26	k55_Locus_2820_Transcri pt_6_1_5	sp B0W6N3 EIF3A_CULQU Eukaryotic translation initiation factor 3 subunit A OS=Culex quinquefasciatus OX=7176 GN=eIF3-S10 PE=3 SV=2	0	Translation
k55_Locus_487_Transcri pt_2_1	1,183.92	k55_Locus_487_Transcrip t_2_1_5	sp P29520 EF1A_BOMMO Elongation factor 1-alpha OS=Bombyx mori OX=7091 PE=2 SV=1	0	Translation
		k55_Locus_7250_Transcri pt_1_1_2	sp Q922J9 FACR1_MOUSE Fatty acyl-CoA reductase 1 OS=Mus musculus OX=10090 GN=Far1 PE=1 SV=1	3.93E-96	Metabolism
k55_Locus_7250_Transcr	2,092.26	k55_Locus_7250_Transcri pt_1_1_5	sp Q5G5C4 RS3A_PERAM 40S ribosomal protein S3a OS=Periplaneta americana OX=6978 GN=Parcxpwex01 PE=2 SV=1	6.85E-143	Translation
124-1-1		k55_Locus_7250_Transcri pt_1_1_5	sp P9WQ49 FAD21_MYCTU Putative fatty-acid—CoA ligase FadD21 OS=Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) OX=83332 GN=fadD21 PE=1 SV=1	8E-3	Metabolism
k55_Locus_781_Transcri pt_76_1	7,060.17		U6-MYRTX-Mru1b		Venom peptide
k61_Locus_2195_Transcr ipt_3_1	2,519.21		U17-MYRTX-Mru1h		Venom peptide
k61_Locus_2828_Transcr ipt_1_1	5,315.64				
k61 Locus 31 Transcrip	1 220 97	k61_Locus_31_Transcript _6_1_5	sp Q96P53 WDFY2_HUMAN WD repeat and FYVE domain-containing protein 2 OS=Homo sapiens OX=9606 GN=WDFY2 PE=1 SV=2	1.2E-136	Metabolism
t_6_1	1,320.87	k61_Locus_31_Transcript _6_1_6	sp B0VYY2 COX5A_NYCCO Cytochrome c oxidase subunit 5A, mitochondrial OS=Nycticebus coucang OX=9470 GN=COX5A PE=2 SV=1	1.4E-47	Metabolism
k61_Locus_6941_Transcr ipt_4_1	1,037.24	k61_Locus_6941_Transcri pt_4_1_1	sp Q5BLY4 ICA_APIME Icarapin-like OS=Apis mellifera OX=7460 PE=2 SV=1	6.44E-21	Venom protein
k65_Locus_2783_Transcr ipt_1_1	3,951.92		U13-MYRTX-Mru1a		Venom peptide
k69_Locus_2037_Transcr ipt_1_1	1,790.05				
k69_Locus_303_Transcri pt_5_1	785.20				
k69_Locus_3235_Transcr ipt_2_1	2,442.86				
k69_Locus_3763_Transcr	9E2 96	k69_Locus_3763_Transcri pt_5_1_4	sp B1A4F7 VDDP4_VESVU Venom dipeptidyl peptidase 4 OS=Vespula vulgaris OX=7454 PE=1 SV=1	2.42E-133	Protein maturation
ipt_5_1	002.00	k69_Locus_3763_Transcri pt_5_1_6	sp B2D0J4 VDPP4_APIME Venom dipeptidyl peptidase 4 OS=Apis mellifera OX=7460 PE=1 SV=1	5.28E-85	Protein maturation
k69_Locus_421_Transcri pt_19_1	340.22	k69_Locus_421_Transcrip t_19_1_2	sp Q8MQS8 SP34_APIME Venom serine protease 34 OS=Apis mellifera OX=7460 PE=2 SV=1	2.17E-69	Protein maturation

		k69_Locus_421_Transcrip t_19_1_3	sp Q8BTI8 SRRM2_MOUSE Serine/arginine repetitive matrix protein 2 OS=Mus musculus OX=10090 GN=Srrm2 PE=1 SV=3	0.0000243	RNA Maturation
		k69_Locus_421_Transcrip t_19_1_6	sp Q9VKJ9 C2D1_DROME Coiled-coil and C2 domain-containing protein 1-like OS=Drosophila melanogaster OX=7227 GN=l(2)gd1 PE=1 SV=1	8.27E-144	Transcription
k69_Locus_509_Transcri pt_1_1	1,731.35	k69_Locus_509_Transcrip t_1_1_4	sp P29520 EF1A_BOMMO Elongation factor 1-alpha OS=Bombyx mori OX=7091 PE=2 SV=1	0	Translation
k69_Locus_8400_Transcr ipt_2_1	5,434.82	k69_Locus_8400_Transcri pt_2_1_3	sp Q75VN3 TCTP_BOMMO Translationally-controlled tumor protein homolog OS=Bombyx mori OX=7091 GN=Tctp PE=2 SV=1	2.95E-91	Metabolism
k69_Locus_8834_Transcr ipt_1_1	58,024.81				

Supplementary Table XVI : Addressing table of major contigs expressed by *Tetramorium africanum* venom glands.

Contig Name	TPMs	Contig ORF	Seq ID Name	E-value	Function
CL108Contig1_1	368.12	CL108Contig1_1_5	sp A3DC27 RSGI2_HUNT2 Anti-sigma-I factor RsgI2 OS=Hungateiclostridium thermocellum (strain ATCC 27405 / DSM 1237 / JCM 9322 / NBRC 103400/ NCIMB 10682 / NRRL B-4536 / VPI 7372) OX=203119 GN=rsgI2 PE=1 SV=1	4.79E-6	Metabolism
CL1458Contig1_1	1,508.21		U17-MYRTX-Ta1e		Venom peptide
CL160Contig1_1	1,792.98		U6-MYRTX-Ta1a		Venom peptide
CL164Contig1_1	17,899.26		U2-MYRTX-Ta1a/U3-MYRTX-Ta1b		Venom peptide
CL179Contig1_1	2,148.80				
CL17Contig2_1	1,147.34		U4-MYRTX-Ta1a		Venom peptide
CL17Contig3_1	3,136.69		U4-MYRTX-Ta1a		
CL3868Contig1_1	729.22	CL3868Contig1_1_2	sp P58743 S26A5_HUMAN Prestin OS=Homo sapiens OX=9606 GN=SLC26A5 PE=1 SV=1	2.07E-100	Metabolism
CL459Contig1_1	1,456.14		U7-MYRTX-Ta1b		Venom peptide
CL4634Contig1_1	13,523.30				
CL4869Contig1_1	5,907.92				
CL5482Contig1_1	5,808.34				
CL5522Contig1_1	1,224.34	CL5522Contig1_1_5	sp P35778 VA3_SOLIN Venom allergen 3 OS=Solenopsis invicta OX=13686 PE=1 SV=2	2.14E-38	Venom allergen

		CL5522Contig1_1_6	sp P0DSI3 VA3_DINQU Venom allergen 3 homolog OS=Dinoponera quadriceps OX=609295 PE=2 SV=1	3.25E-28	Venom allergen
CL588Contig1_1	8,094.94		U17-MYRTX-Ta1d		Venom peptide
CL617Contig1_1	4,805.32		U17-MYRTX-Ta1b		Venom peptide
CL653Contig1_1	1,894.19				
CL87Contig1_1	2,351.59		U25-MYRTX-Ta1a		Venom peptide
k25_Locus_653_Transcri pt_26_6	4,937.03				
k31_Locus_1121_Transcr ipt_37_1	25,205.99		U22-MYRTX-Ta1a		Venom peptide
k31_Locus_467_Transcri pt_20_1	3,878.95	k31_Locus_467_Transcri pt_20_1_5	sp P0DSI2 PA1_DINQU Phospholipase A1 OS=Dinoponera quadriceps OX=609295 PE=2 SV=1	2.39E-60	Venom protein
k31_Locus_663_Transcri pt_19_1	2,046.71		U7-MYRTX-Ta1a		
k31_Locus_683_Transcri pt_25_1	3,740.35				
k31_Locus_683_Transcri pt_25_2	2,510.27				
k31_Locus_683_Transcri pt_25_7	2,338.19				
k31_Locus_778_Transcri pt_27_1	2,816.59		U17-MYRTX-Ta1c		Venom peptide
k31_Locus_941_Transcri pt_5_1	13,409.41		U21-MYRTX-Ta1a / U11-MYRTX-Ta1a / U13-MYRTX-Ta1a		Venom peptide
k37_Locus_18_Transcript _477_1	782.71		U17-MYRTX-Ta1d		Venom peptide
k37_Locus_2356_Transcr ipt_10_1	73,264.21		U2-MYRTX-Ta1a / U3-MYRTX-Ta1d		
k37_Locus_266_Transcri pt_1_1	1,842.83				
k37_Locus_4283_Transcr ipt 1 1	16,960.97		U22-MYRTX-Ta1a		Venom peptide
k43_Locus_102_Transcri pt 4 1	76,679.09		M-MYRTX-Ta1a		
k43_Locus_14252_Transc ript_1_1	2,872.25	k43_Locus_14252_Transc ript_1_1_6	sp Q9U3U0 RLA0_CERCA 60S acidic ribosomal protein P0 OS=Ceratitis capitata OX=7213 GN=RpLP0 PE=3 SV=1	2.27E-159	Translation
k43_Locus_1699_Transcr ipt_37_1	49,972.40		U2-MYRTX-Ta1a		Venom peptide
k43_Locus_211_Transcri pt_11_1	325.61	k43_Locus_211_Transcri pt_11_1_4	sp A3DC27 RSGI2_HUNT2 Anti-sigma-I factor RsgI2	1.6E-2	Metabolism

			OS=Hungateiclostridium thermocellum (strain ATCC 27405 / DSM 1237 / JCM 9322		
			/ NBKC 103400 / NCIMB 10682 / NRRL B-4536 / VPI 7372) OX=203119 GN=rsgI2 PE=1 SV=1		
k43_Locus_856_Transcri pt_6_1	6,865.94		U11-MYRTX-Ta1a/ U21-MYRTX-Ta1b / U13-MYRTX-Ta1a		Venom peptide
k49_Locus_1553_Transcr ipt_12_1	36,786.51		U3-MYRTX-Ta1d /U2-MYRTX-Ta1a		Venom peptide
k49_Locus_2984_Transcr ipt_13_2	2,205.24	k49_Locus_2984_Transcri pt_13_2_3	sp P0DSI2 PA1_DINQU Phospholipase A1 OS=Dinoponera quadriceps OX=609295 PE=2 SV=1	1.42E-59	Venom protein
k49_Locus_554_Transcri pt_11_1	1,827.42		U7-MYRTX-Ta1b / U7-MYRTX-Ta1a		Venom peptide
k55_Locus_11_Transcript _13_1	429.46		U17-MYRTX-Ta1e		Venom peptide
k55_Locus_174_Transcri pt_1_1	637.63	k55_Locus_174_Transcri pt_1_1_2	sp P07707 NU4M_DROYA NADH-ubiquinone oxidoreductase chain 4 OS=Drosophila yakuba OX=7245 GN=mt :ND4 PE=3 SV=1	1.08E-39	Metabolism
k55_Locus_513_Transcri pt_10_1	1,557.40		U23-MYRTX-Ta1a		Venom peptide
k55_Locus_683_Transcri pt_2_1	8,066.32		M-MYRTX-Ta1a		Venom peptide
k61_Locus_1435_Transcr ipt_6_1	9,082.74		U3-MYRTX-Ta1a		Venom peptide
k61_Locus_187_Transcri pt_13_1	405.20	k61_Locus_187_Transcri pt_13_1_4	sp A3DC27 RSGI2_HUNT2 Anti-sigma-I factor RsgI2 OS=Hungateiclostridium thermocellum (strain ATCC 27405 / DSM 1237 / JCM 9322 / NBRC 103400 / NCIMB 10682 / NRRL B-4536 / VPI 7372) OX=203119 GN=rsgI2 PE=1 SV=1	4.36E-6	Metabolism
k61_Locus_2243_Transcr ipt_6_1	2,363.92		U23-MYRTX-Ta1a		Venom peptide
k61_Locus_874_Transcri pt_8_1	1,087.53				
k65_Locus_1263_Transcr ipt_4_1	2,589.81		U1-MYRTX-Ta1a		Venom peptide
k65_Locus_14_Transcript _5_1	1,619.97		U17-MYRTX-Ta1c		
k65_Locus_2350_Transcr ipt_3_1	1,931.24		U7-MYRTX-Ta1b		Venom peptide
k65_Locus_8717_Transcr ipt_3_1	10,923.04		U3-MYRTX-Ta1c		Venom peptide
k69_Locus_16_Transcript _8_1	1,451.04		U17-MYRTX-Ta1c		Venom peptide
k69_Locus_191_Transcri pt_7_1	447.04				

k69_Locus_2236_Transcr ipt_5_1	5,186.60	k69_Locus_2236_Transcri pt_5_1_4	sp Q7JQ07 MOS1T_DROMA Mariner Mos1 transposase OS=Drosophila mauritiana OX=7226 GN=mariner\T PE=1 SV=1	8.13E-155	Transcription
k69_Locus_5034_Transcr ipt_1_1	5,411.41		U3-MYRTX-Ta1c		Venom peptide
k69_Locus_898_Transcri pt_2_1	14,7209.37		U1-MYRTX-Ta1a		Venom peptide

Supplementary Table XVII : Addressing table of major contigs expressed by *Pogonomyrmex californicus* venom glands.

Name	TPMs	Contig ORF	Seq ID Name	E-value	Function
CL1024Contig1_1	75,492.15		U34-MYRTX-Pc1a		Venom peptide
		CL103Contig1_1_2	sp P98158 LRP2_RAT Low-density lipoprotein receptor-related protein 2 OS=Rattus norvegicus OX=10116 GN=Lrp2 PE=1 SV=1	0	Metabolism
CL103Contig1_1	30.03	CL103Contig1_1_4	sp Q5XIN3 MIPT3_RAT TRAF3-interacting protein 1 OS=Rattus norvegicus OX=10116 GN=Traf3ip1 PE=1 SV=1	1.19E-4	Metabolism
		CL103Contig1_1_4	sp Q5RC80 RBM39_PONAB RNA-binding protein 39 OS=Pongo abelii OX=9601 GN=RBM39 PE=2 SV=1	1.74E-154	Transcription
CL1171Contig1_1	523.14				
CL131Contig2_1	64.36	CL131Contig2_1_3	sp A0A291PQF1 UGT5_DACCO UDP-glycosyltransferase UGT5 OS=Dactylopius coccus OX=765876 GN=UGT5 PE=1 SV=1	6.23E-10	Protein maturation
CL15Contig2_1	112.47	CL15Contig2_1_5	sp Q9R049 AMFR_MOUSE E3 ubiquitin-protein ligase AMFR OS=Mus musculus OX=10090 GN=Amfr PE=1 SV=2	2.2E-148	Metabolism
CL161Contig1_1	252.98				
CL161Contig2_1	212.25				
CL1660Contig1_1	85.26				
		CL1739Contig1_1_1	sp C3YWU0 FUCO_BRAFL Alpha-L-fucosidase OS=Branchiostoma floridae OX=7739 GN=BRAFLDRAFT_56888 PE=3 SV=2	2.62E-162	Metabolism
CL1739Contig1_1	103.53	CL1739Contig1_1_2	sp C3YWU0 FUCO_BRAFL Alpha-L-fucosidase OS=Branchiostoma floridae OX=7739 GN=BRAFLDRAFT_56888 PE=3 SV=2	2.73E-44	Metabolism
		CL1739Contig1_1_6	sp Q96KP4 CNDP2_HUMAN Cytosolic non-specific dipeptidase OS=Homo sapiens OX=9606 GN=CNDP2 PE=1 SV=2	0	Metabolism
CL1823Contig1_1	57.37	CL1823Contig1_1_1	sp Q7LBC6 KDM3B_HUMAN Lysine-specific demethylase 3B OS=Homo sapiens OX=9606 GN=KDM3B PE=1 SV=2	0	Metabolism
esite contagi_i		CL1823Contig1_1_2	sp P39703 YAA4_YEAST Putative uncharacterized protein YAL004W	6.5E-22	

			OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) OX=559292 GN=YAL004W PE=5 SV=2		
		CL1823Contig1_1_5	sp P29844 BIP_DROME Endoplasmic reticulum chaperone BiP OS=Drosophila melanogaster OX=7227 GN=Hsc70-3 PE=1 SV=2	0	Protein maturation
CL204Contig1_1	6203.22				
	10.10	CL216Contig1_1_3	sp O15013 ARHGA_HUMAN Rho guanine nucleotide exchange factor 10 OS=Homo sapiens OX=9606 GN=ARHGEF10 PE=1 SV=4	1.73E-141	Metabolism
CL216Contig1_1	49.10	CL216Contig1_1_6	sp Q15643 TRIPB_HUMAN Thyroid receptor-interacting protein 11 OS=Homo sapiens OX=9606 GN=TRIP11 PE=1 SV=3	1.05E-39	Metabolism
CL244Contig1_1	751.72	CL244Contig1_1_3	sp Q962Q7 RS23_SPOFR 40S ribosomal protein S23 OS=Spodoptera frugiperda OX=7108 GN=RpS23 PE=2 SV=1	6.37E-90	Translation
CL506Contig1_1	77.10	CL506Contig1_1_4	sp Q2F637 1433Z_BOMMO 14-3-3 protein zeta OS=Bombyx mori OX=7091 GN=14-3-3zeta PE=2 SV=2	4.27E-160	Metabolism
		CL5424Contig1_1_4	sp B2D0J4 VDPP4_APIME Venom dipeptidyl peptidase 4 OS=Apis mellifera OX=7460 PE=1 SV=1	0.001	Protein maturation
CL5424Contig1_1	99.52	CL5424Contig1_1_5	sp B1A4F7 VDDP4_VESVU Venom dipeptidyl peptidase 4 OS=Vespula vulgaris OX=7454 PE=1 SV=1	8.09E-31	Protein maturation
		CL5424Contig1_1_6	sp B2D0J4 VDPP4_APIME Venom dipeptidyl peptidase 4 OS=Apis mellifera OX=7460 PE=1 SV=1	6.86E-166	Protein maturation
CL613Contig1_1	402.24				
		CL628Contig1_1_1	sp Q7SXP0 S22BB_DANRE Vesicle-trafficking protein SEC22b-B OS=Danio rerio OX=7955 GN=sec22bb PE=2 SV=1	3.83E-82	Protein maturation
CL628Contig1_1	40.08	CL628Contig1_1_5	sp Q9NWK9 BCD1_HUMAN Box C/D snoRNA protein 1 OS=Homo sapiens OX=9606 GN=ZNHIT6 PE=1 SV=1	1.08E-14	Translation
		CL628Contig1_1_6	sp E9QAT4 SC16A_MOUSE Protein transport protein Sec16A OS=Mus musculus OX=10090 GN=Sec16a PE=1 SV=1	1.48E-114	Protein maturation
CL62Contig1_1	829.14	CL62Contig1_1_5	sp P0CG71 UBIQ1_CAEEL Polyubiquitin-A OS=Caenorhabditis elegans OX=6239 GN=ubq-1 PE=3 SV=1	0	Metabolism
CL6782Contig1_1	501.48				
CL6860Contig1_1	210.80	CL6869Contig1_1_4	sp P05031 DDC_DROME Aromatic-L-amino-acid decarboxylase OS=Drosophila melanogaster OX=7227 GN=Ddc PE=1 SV=4	0	Metabolism
CL0009Contig1_1	219.00	CL6969Contig1_1_4	sp Q8T8R1 Y3800_DROME CCHC-type zinc finger protein CG3800 OS=Drosophila melanogaster OX=7227 GN=CG3800 PE=1 SV=1	5.03E-40	Translation
CL6927Contig1_1	351.25				

CL6969Contig1_1	104.64				
CL7032Contig1_1	714.28	CL7032Contig1_1_4	sp P29520 EF1A_BOMMO Elongation factor 1-alpha OS=Bombyx mori OX=7091 PE=2 SV=1	0	Translation
CL7153Contig1_1	426.91	CL7153Contig1_1_3	sp P82147 L2EFL_DROME Protein lethal(2)essential for life OS=Drosophila melanogaster OX=7227 GN=l(2)efl PE=1 SV=1	3.25E-46	Metabolism
CL715Contig1_1	26.57	CL715Contig1_1_5	sp G5E8K5 ANK3_MOUSE Ankyrin-3 OS=Mus musculus OX=10090 GN=Ank3 PE=1 SV=1	0	Transcription
CL7245Contig1_1	90.94	CL7245Contig1_1_4	sp B6VQA1 DIMM_DROME Protein dimmed OS=Drosophila melanogaster OX=7227 GN=dimm PE=1 SV=1	1.94E-30	Transcription
CL7399Contig1_1	1,171.86				
CL73Contig2_1	3,81.75	CL73Contig2_1_2	sp P0C5Q0 YL54F_YEAST Putative uncharacterized protein YLR154W-F OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) OX=559292 GN=YLR154W-F PE=5 SV=1	6.66E-5	
		CL73Contig2_1_6	sp P46413 GSHB_RAT Glutathione synthetase OS=Rattus norvegicus OX=10116 GN=Gss PE=1 SV=1	3.22E-30	Metabolism
CL7560Contig1_1	135.82	CL7560Contig1_1_2	sp Q9Y600 CSAD_HUMAN Cysteine sulfinic acid decarboxylase OS=Homo sapiens OX=9606 GN=CSAD PE=1 SV=2	6.22E-163	Metabolism
	101.00	CL7618Contig1_1_2	sp Q8BGX0 TRI23_MOUSE E3 ubiquitin-protein ligase TRIM23 OS=Mus musculus OX=10090 GN=Trim23 PE=2 SV=1	2.08E-152	Metabolism
CL7618Contig1_1	121.02	CL7618Contig1_1_6	sp P29413 CALR_DROME Calreticulin OS=Drosophila melanogaster OX=7227 GN=Calr PE=1 SV=2	0	Protein maturation
CL7696Contig1_1	1,450.61				
CL7902Contig1_1	566.94	CL7902Contig1_1_5	sp1P627521RL23A_RAT 60S ribosomal protein L23a OS=Rattus norvegicus OX=10116 GN=Rpl23a PE=2 SV=1	7.86E-53	Translation
CL7969Contig1_1	441.86	CL7969Contig1_1_5	sp E0X9F6 THAP1_THAPI Allergen Tha p 1 OS=Thaumetopoea pityocampa OX=208016 PE=1 SV=1	1.68E-36	Venom allergen
		CL7Contig1_1_5	sp P34854 NU5M_ANOGA NADH-ubiquinone oxidoreductase chain 5 OS=Anopheles gambiae OX=7165 GN=mt:ND5 PE=3 SV=1	3.21E-63	Metabolism
CL7Contig1_1	240.54	CL7Contig5_1_4	sp P34854 NU5M_ANOGA NADH-ubiquinone oxidoreductase chain 5 OS=Anopheles gambiae OX=7165 GN=mt:ND5 PE=3 SV=1	3.21E-63	Metabolism
		CL7Contig5_1_5	sp Q34048 NU4M_CERCA NADH-ubiquinone oxidoreductase chain 4 OS=Ceratitis capitata OX=7213 GN=ND4 PE=3 SV=2	1.52E-22	Metabolism
CL7Contig5_1	374.81				
CL8006Contig1_1	155.10	CL8006Contig1_1_6	sp Q05974 RAB1A_LYMST Ras-related protein Rab-1A OS=Lymnaea stagnalis OX=6523 GN=RAB1A PE=2 SV=1	1.79E-117	Protein maturation

CL8116Contig1_1	764.67	CL8116Contig1_1_2	sp Q95ZE8 RL14_DROVI 60S ribosomal protein L14 OS=Drosophila virilis OX=7244 GN=RpL14 PE=3 SV=1	1.25E-22	Translation
CL8284Contig1_1	38.48	CL8284Contig1_1_5	sp Q5T5U3 RHG21_HUMAN Rho GTPase-activating protein 21 OS=Homo sapiens OX=9606 GN=ARHGAP21 PE=1 SV=2	7.31E-91	Metabolism
CL9614Contig1_1	527.87	CL9614Contig1_1_4	sp Q962R1 RS18_SPOFR 40S ribosomal protein S18 OS=Spodoptera frugiperda OX=7108 GN=RpS18 PE=2 SV=1	9.45E-85	Translation
CL964Contig1_1	805.42	CL964Contig1_1_1	sp P05389 RLA2_DROME 60S acidic ribosomal protein P2 OS=Drosophila melanogaster OX=7227 GN=RpLP2 PE=1 SV=1	3.52E-23	Translation
k25_Locus_1215_Transcr ipt_6_1	81.19	k25_Locus_1215_Transcri pt_6_1_4	sp Q9DC11 PXDC2_MOUSE Plexin domain-containing protein 2 OS=Mus musculus OX=10090 GN=Plxdc2 PE=1 SV=1	2.5E-75	Metabolism
k25_Locus_1230_Transcr ipt_1_1	171.98	k25_Locus_1230_Transcri pt_1_1_6	sp P41822 FRI_AEDAE Ferritin subunit OS=Aedes aegypti OX=7159 GN=FERH PE=1 SV=2	2.41E-42	Host defense
k25_Locus_12664_Transc ript_1_1	370.04	k25_Locus_12664_Transc ript_1_1_4	sp Q4GXU6 RS4_CARGR 40S ribosomal protein S4 OS=Carabus granulatus OX=118799 GN=RpS4 PE=2 SV=1	5.47E-167	Translation
k25_Locus_12814_Transc ript_3_1	1,066.10	k25_Locus_12814_Transc ript_3_1_5	sp P35502 ESTF_MYZPE Esterase FE4 OS=Myzus persicae OX=13164 PE=1 SV=1	7.69E-86	Host defense
k25_Locus_1290_Transcr ipt_5_1	521.21	k25_Locus_1290_Transcri pt_5_1_4	sp P09180 RL4_DROME 60S ribosomal protein L4 OS=Drosophila melanogaster OX=7227 GN=RpL4 PE=1 SV=2	6.98E-170	Translation
k25_Locus_141_Transcri pt_1_1	35.43	k25_Locus_141_Transcri pt_1_1_4	sp Q9U943 APLP_LOCMI Apolipophorins OS=Locusta migratoria OX=7004 PE=1 SV=2	0	Metabolism
k25_Locus_1447_Transcr ipt_8_1	99.03				
k25_Locus_1480_Transcr ipt_2_1	574.42				
k25_Locus_1556_Transcr	76 31	k25_Locus_1556_Transcri pt_1_1_2	sp B4JYU5 TMEDA_DROGR Transmembrane emp24 domain-containing protein bai OS=Drosophila grimshawi OX=7222 GN=bai PE=3 SV=2	4.79E-85	Metabolism
ipt_1_1	70.51	k25_Locus_1556_Transcri pt_1_1_5	sp O01735 YC91_CAEEL Uncharacterized MFS-type transporter C09D4.1 OS=Caenorhabditis elegans OX=6239 GN=C09D4.1 PE=3 SV=2	8.14E-119	Metabolism
k25_Locus_1936_Transcr ipt_1_1	79.51	k25_Locus_1936_Transcri pt_1_12	sp O88307 SORL_MOUSE Sortilin-related receptor OS=Mus musculus OX=10090 GN=Sorl1 PE=1 SV=3	0	Metabolism
k25_Locus_1994_Transcr ipt_5_1	144.50				
k25_Locus_201_Transcri	120.15	k25_Locus_201_Transcri pt_13_1_6	sp B1A4F7 VDDP4_VESVU Venom dipeptidyl peptidase 4 OS=Vespula vulgaris OX=7454 PE=1 SV=1	4.4E-59	Peptide maturation
pt_13_1	138.15	k25_Locus_201_Transcri pt_13_1_6	sp B2D0J4 VDPP4_APIME Venom dipeptidyl peptidase 4 OS=Apis mellifera OX=7460 PE=1 SV=1_	3.7E-60	Peptide maturation

		k25_Locus_201_Transcri pt_13_1_6	sp B2D0J4 VDPP4_APIME Venom dipeptidyl peptidase 4 OS=Apis mellifera OX=7460 PE=1 SV=1	7.68E-79	Peptide maturation
k25_Locus_2163_Transcr	1/7 10	k25_Locus_2163_Transcri pt_2_1_5	sp P36362 CHIT_MANSE Endochitinase OS=Manduca sexta OX=7130 PE=2 SV=1	2.59E-138	Metabolism
ipt_2_1	167.49	k25_Locus_2163_Transcri pt_2_1_5	sp P36362 CHIT_MANSE Endochitinase OS=Manduca sexta OX=7130 PE=2 SV=1	1.83E-22	Metabolism
k25_Locus_2444_Transcr ipt_9_1	72.79	k25_Locus_2444_Transcri pt_9_1_6	sp Q7G192 ALDO2_ARATH Indole-3-acetaldehyde oxidase OS=Arabidopsis thaliana OX=3702 GN=AAO2 PE=1 SV=2	7.39E-163	Metabolism
k25_Locus_2518_Transcr ipt_3_1	116.46	k25_Locus_2518_Transcri pt_3_1_5	sp Q8VDJ3 VIGLN_MOUSE Vigilin OS=Mus musculus OX=10090 GN=Hdlbp PE=1 SV=1	0	Metabolism
k25_Locus_2595_Transcr ipt_2_1	104.12	k25_Locus_2595_Transcri pt_2_1_5	sp Q9DBG3 AP2B1_MOUSE AP-2 complex subunit beta OS=Mus musculus OX=10090 GN=Ap2b1 PE=1 SV=1	0	Protein maturation
k25_Locus_2747_Transcr ipt_4_1	432.10	k25_Locus_2747_Transcri pt_4_1_4	sp B4PEU8 RS9_DROYA 40S ribosomal protein S9 OS=Drosophila yakuba OX=7245 GN=RpS9 PE=2 SV=1	7.84E-111	Translation
k25_Locus_2909_Transcr ipt_4_1	1,284.87	k25_Locus_2909_Transcri pt_4_1_5	sp P29341 PABP1_MOUSE Polyadenylate-binding protein 1 OS=Mus musculus OX=10090 GN=Pabpc1 PE=1 SV=2	0	Translation
k25_Locus_2955_Transcr ipt_10_1	946.95	k25_Locus_2955_Transcri pt_10_1_4	sp Q9VRK8 PLBL_DROME Putative phospholipase B-like lamina ancestor OS=Drosophila melanogaster OX=7227 GN=lama PE=2 SV=3	5.5E-66	Metabolism
k25_Locus_3019_Transcr ipt_10_1	97.01	k25_Locus_3019_Transcri pt_10_1_5	sp Q8BGM5 BEST2_MOUSE Bestrophin-2 OS=Mus musculus OX=10090 GN=Best2 PE=2 SV=1	1.94E-116	
k25_Locus_310_Transcri	54.00	k25_Locus_310_Transcri pt_6_1_5	sp O96005 CLPT1_HUMAN Cleft lip and palate transmembrane protein 1 OS=Homo sapiens OX=9606 GN=CLPTM1 PE=1 SV=1	1.57E-175	Metabolism
pt_6_1	76.09	k25_Locus_310_Transcri pt_6_1_6	sp Q5R8Y6 TM9S2_PONAB Transmembrane 9 superfamily member 2 OS=Pongo abelii OX=9601 GN=TM9SF2 PE=2 SV=1	0	Protein maturation
k25_Locus_3218_Transcr	70.40	k25_Locus_3218_Transcri pt_10_1_2	sp Q27294 CAZ_DROME RNA-binding protein cabeza OS=Drosophila melanogaster OX=7227 GN=caz PE=2 SV=2	1.67E-38	Translation
ipt_10_1	78.48	k25_Locus_3218_Transcri pt_10_1_4	sp Q9IA79 BI1_PAROL Probable Bax inhibitor 1 OS=Paralichthys olivaceus OX=8255 GN=tmbim6 PE=2 SV=1	2.81E-53	Metabolism
k25_Locus_344_Transcri pt_6_1	294.67	k25_Locus_344_Transcri pt_6_1_4	sp O15173 PGRC2_HUMAN Membrane-associated progesterone receptor component 2 OS=Homo sapiens OX=9606 GN=PGRMC2 PE=1 SV=1	2.82E-42	Metabolism
k25_Locus_3500_Transcr ipt_4_1	397.76	k25_Locus_3500_Transcri pt_4_1_6	sp Q7M4F4 CUD1_SCHGR Endocuticle structural glycoprotein SgAbd-1 OS=Schistocerca gregaria OX=7010 PE=1 SV=1	5.78E-22	Metabolism
k25_Locus_3564_Transcr ipt_1_1	451.18	k25_Locus_3564_Transcri pt_1_1_6	sp Q963B7 RL9_SPOFR 60S ribosomal protein L9 OS=Spodoptera frugiperda OX=7108 GN=RpL9 PE=2 SV=1	9.55E-112	Translation
k25_Locus_358_Transcri pt_8_1	68.91	k25_Locus_358_Transcri pt_8_1_5	sp Q5FW12 TIPRL_XENTR TIP41-like protein OS=Xenopus tropicalis OX=8364 GN=tiprl PE=2 SV=1	8.5E-65	Metabolism

		k25_Locus_358_Transcri pt_8_1_6	sp P29747 CREBA_DROME Cyclic AMP response element-binding protein A OS=Drosophila melanogaster OX=7227 GN=CrebA PE=1 SV=2	8.47E-38	Metabolism
k25_Locus_3667_Transcr ipt_6_1	95.64	k25_Locus_3667_Transcri pt_6_1_6	sp Q91V92 ACLY_MOUSE ATP-citrate synthase OS=Mus musculus OX=10090 GN=Acly PE=1 SV=1	0	Metabolism
		k25_Locus_374_Transcri pt_240_1_3	sp Q9VFP2 RDX_DROME Protein roadkill OS=Drosophila melanogaster OX=7227 GN=rdx PE=1 SV=2	0	Metabolism
k25_Locus_374_Transcri	12 60	k25_Locus_374_Transcri pt_240_1_4	sp Q03001 DYST_HUMAN Dystonin OS=Homo sapiens OX=9606 GN=DST PE=1 SV=4	4.82E-113	Metabolism
pt_240_1	12.00	k25_Locus_374_Transcri pt_240_1_4	sp Q03001 DYST_HUMAN Dystonin OS=Homo sapiens OX=9606 GN=DST PE=1 SV=4	0	Metabolism
		k25_Locus_374_Transcri pt_240_1_6	sp P30427 PLEC_RAT Plectin OS=Rattus norvegicus OX=10116 GN=Plec PE=1 SV=2	2.99E-98	Metabolism
k25_Locus_4036_Transcr ipt_3_1	92.25	k25_Locus_4036_Transcri pt_3_1_4	sp Q7KN62 TERA_DROME Transitional endoplasmic reticulum ATPase TER94 OS=Drosophila melanogaster OX=7227 GN=TER94 PE=1 SV=1	0	Protein maturation
k25_Locus_4255_Transcr ipt_4_1	230.58	k25_Locus_4255_Transcri pt_4_1_4	sp P47199 QOR_MOUSE Quinone oxidoreductase OS=Mus musculus OX=10090 GN=Cryz PE=1 SV=1	3.05E-4	Translation
k25_Locus_4362_Transcr ipt_8_1	40.45	k25_Locus_4362_Transcri pt_8_1_6	sp P22700 ATC1_DROME Calcium-transporting ATPase sarcoplasmic/endoplasmic reticulum type OS=Drosophila melanogaster OX=7227 GN=SERCA PE=1 SV=2	0	Metabolism
k25_Locus_4634_Transcr ipt_5_1	239.77				
k25_Locus_4686_Transcr ipt_1_1	141.53	k25_Locus_4686_Transcri pt_1_1_5	sp P31401 VATB_MANSE V-type proton ATPase subunit B OS=Manduca sexta OX=7130 GN=VHA55 PE=2 SV=1	0	Metabolism
k25_Locus_4895_Transcr ipt_3_1	301.37	k25_Locus_4895_Transcri pt_3_1_5	sp P12261 EF1G_ARTSA Elongation factor 1-gamma OS=Artemia salina OX=85549 PE=1 SV=3	0	Translation
k25_Locus_499_Transcri pt_44_1	359.64	k25_Locus_499_Transcri pt_44_1_2	sp P0C5Q0 YL54F_YEAST Putative uncharacterized protein YLR154W-F OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) OX=559292 GN=YLR154W-F PE=5 SV=1	6.66E-5	
k25_Locus_50_Transcript _10_1	632.71	k25_Locus_50_Transcript _10_1_5	sp Q9VLW2 KI26L_DROME Kinesin-like protein CG14535 OS=Drosophila melanogaster OX=7227 GN=CG14535 PE=2 SV=2	9.12E-154	Metabolism
k25_Locus_503_Transcri pt_5_1	3,237.56				
k25_Locus_5123_Transcr ipt_3_1	443.51	k25_Locus_5123_Transcri pt_3_1_5	sp Q2PQM7 IDGF4_GLOMM Chitinase-like protein Idgf4 OS=Glossina morsitans morsitans OX=37546 GN=Idgf4 PE=2 SV=1	9.53E-94	Metabolism
k25_Locus_5472_Transcr ipt_4_1	204.82	k25_Locus_5472_Transcri pt_4_1_1	sp P32429 RL7A_CHICK 60S ribosomal protein L7a OS=Gallus gallus OX=9031 GN=RPL7A PE=2 SV=2	3.91E-122	Translation

		k25_Locus_5472_Transcri pt_4_1_4	sp1Q5ZLD71VPS53_CHICK Vacuolar protein sorting-associated protein 53 homolog OS=Gallus gallus OX=9031 GN=VPS53 PE=2 SV=1	0	Metabolism
k25_Locus_5834_Transcr ipt_1_1	333.98	k25_Locus_5834_Transcri pt_1_1_6	sp P54399 PDI_DROME Protein disulfide-isomerase OS=Drosophila melanogaster OX=7227 GN=Pdi PE=2 SV=1	0	Protein maturation
k25_Locus_587_Transcri	25 70	k25_Locus_587_Transcri pt_10_1_2	sp Q2KJG3 SYNC_BOVIN Asparagine—tRNA ligase. Cytoplasmic OS=Bos taurus OX=9913 GN=NARS PE=2 SV=3	0	Translation
pt_10_1	33.79	k25_Locus_587_Transcri pt_10_1_5	sp Q8TDJ6 DMXL2_HUMAN DmX-like protein 2 OS=Homo sapiens OX=9606 GN=DMXL2 PE=1 SV=2	0	Protein maturation
k25_Locus_60_Transcript	287.10	k25_Locus_60_Transcript _1_1_3	sp O13532 YL217_YEAST Putative uncharacterized protein YLR217W OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) OX=559292 GN=YLR217W PE=5 SV=1	4.77E-5	
**		k25_Locus_60_Transcript _1_1_6	sp P54985 PPIA_BLAGE Peptidyl-prolyl cis-trans isomerase OS=Blattella germanica OX=6973 GN=CYPA PE=2 SV=1	3.93E-92	Protein maturation
k25_Locus_622_Transcri pt_1_1	168.75	k25_Locus_622_Transcri pt_1_1_6	sp P17336 CATA_DROME Catalase OS=Drosophila melanogaster OX=7227 GN=Cat PE=1 SV=2	0	Host defense
k25_Locus_638_Transcri pt_7_1	194.38		U36-MYRTX-Pc1a		Venom peptide
k25 Locus 673 Transcri	172 10	k25_Locus_673_Transcri pt_10_1_5	sp P19111 PPBI_BOVIN Intestinal-type alkaline phosphatase OS=Bos taurus OX=9913 GN=ALPI PE=1 SV=2	7.38E-34	Metabolism
pt_10_1	175.12	k25_Locus_673_Transcri pt_10_1_5	sp Q24238 APH4_DROME Alkaline phosphatase 4 OS=Drosophila melanogaster OX=7227 GN=Alp4 PE=2 SV=3	1.63E-57	Metabolism
k25_Locus_7244_Transcr ipt_1_1	457.91	k25_Locus_7244_Transcri pt_1_1_4	sp P32100 RL7_DROME 60S ribosomal protein L7 OS=Drosophila melanogaster OX=7227 GN=RpL7 PE=1 SV=2	2.69E-89	Translation
k25_Locus_745_Transcri	210.42	k25_Locus_745_Transcri pt_21_1_5	sp Q5BLY5 ACPH1_APIME Venom acid phosphatase Acph-1 OS=Apis mellifera OX=7460 PE=1 SV=1	5.67E-19	Venom allergen
pt_21_1	219.43	k25_Locus_745_Transcri pt_21_1_6	sp Q5BLY5 ACPH1_APIME Venom acid phosphatase Acph-1 OS=Apis mellifera OX=7460 PE=1 SV=1	3.88E-45	Venom allergen
k25_Locus_789_Transcri pt_4_1	173.80	k25_Locus_789_Transcri pt_4_1_5	sp Q80U59 K0232_MOUSE Uncharacterized protein KIAA0232 OS=Mus musculus OX=10090 GN=Kiaa0232 PE=1 SV=2	7.42E-14	
k25_Locus_80_Transcript _9_1	30.85	k25_Locus_80_Transcript _9_1_3	sp Q8NF91 SYNE1_HUMAN Nesprin-1 OS=Homo sapiens OX=9606 GN=SYNE1 PE=1 SV=4	6.91E-57	Metabolism
k25_Locus_8262_Transcr ipt_1_1	320.63	k25_Locus_8262_Transcri pt_1_1_6	sp Q4VIT4 PDIA3_CHLAE Protein disulfide-isomerase A3 OS=Chlorocebus aethiops OX=9534 GN=PDIA3 PE=1 SV=1	3.35E-129	Protein maturation
k25_Locus_8271_Transcr ipt_1_1	217.55	k25_Locus_8271_Transcri pt_1_1_5	sp O35704 SPTC1_MOUSE Serine palmitoyltransferase 1 OS=Mus musculus OX=10090 GN=Sptlc1 PE=1 SV=2	3.23E-124	Metabolism
k25_Locus_843_Transcri pt_1_1	965.27				

k31_Locus_1168_Transcr ipt_1_1	166.56	k31_Locus_1168_Transcri pt_1_1_6	sp P41822 FRI_AEDAE Ferritin subunit OS=Aedes aegypti OX=7159 GN=FERH PE=1 SV=2	2.41E-42	Metabolism
k31_Locus_1208_Transcr ipt_7_1	106.18				
k31_Locus_12495_Transc ript_1_1	883.01	k31_Locus_12495_Transc ript_1_1_4	sp Q6EV04 RS3A_BIPLU 40S ribosomal protein S3a OS=Biphyllus lunatus OX=197003 PE=2 SV=1	3.44E-131	Translation
k31_Locus_13257_Transc ript_3_1	339.78	k31_Locus_13257_Transc ript_3_1_6	sp Q2KIK3 SIM14_BOVIN Small integral membrane protein 14 OS=Bos taurus OX=9913 GN=SMIM14 PE=3 SV=1	8.72E-14	Metabolism
k31_Locus_133_Transcri	14.40	k31_Locus_133_Transcri pt_13_1_3	sp O15013 ARHGA_HUMAN Rho guanine nucleotide exchange factor 10 OS=Homo sapiens OX=9606 GN=ARHGEF10 PE=1 SV=4	1.55E-141	Host defense
pt_13_1	46.60	k31_Locus_133_Transcri pt_13_1_6	sp Q15643 TRIPB_HUMAN Thyroid receptor-interacting protein 11 OS=Homo sapiens OX=9606 GN=TRIP11 PE=1 SV=3	7.7E-40	Protein maturation
k31_Locus_1424_Transcr ipt_4_1	665.37	k31_Locus_1424_Transcri pt_4_1_5	sp Q5BLY4 ICA_APIME Icarapin-like OS=Apis mellifera OX=7460 PE=2 SV=1	1.9E-20	Venom protein
k31_Locus_1690_Transcr ipt_1_1	507.48	k31_Locus_1690_Transcri pt_1_1_4	sp Q68KK0 PA1_SOLIN Phospholipase A1 OS=Solenopsis invicta OX=13686 PE=1 SV=1	1.64E-70	Venom allergen
k31_Locus_2082_Transcr ipt_4_1	292.38	k31_Locus_2082_Transcri pt_4_1_5	sp P36362 CHIT_MANSE Endochitinase OS=Manduca sexta OX=7130 PE=2 SV=1	9.5E-174	Metabolism
		k31_Locus_2397_Transcri pt_7_1_1	sp Q1HDZ5 EIF3B_BOMMO Eukaryotic translation initiation factor 3 subunit B OS=Bombyx mori OX=7091 GN=eIF3-S9 PE=2 SV=1	0	Translation
k31_Locus_2397_Transcr ipt_7_1	128.83	k31_Locus_2397_Transcri pt_7_1_4	sp Q5ZHN9 PGPS1_CHICK CDP-diacylglycerol—glycerol-3-phosphate 3- phosphatidyltransferase. Mitochondrial OS=Gallus gallus OX=9031 GN=PGS1 PE=2 SV=1	1.92E-106	Metabolism
k31_Locus_2480_Transcr ipt_5_1	126.90	k31_Locus_2480_Transcri pt_5_1_6	sp P62154 CALM_LOCMI Calmodulin OS=Locusta migratoria OX=7004 PE=1 SV=2	4.93E-94	Metabolism
k31_Locus_2701_Transcr ipt_2_1	269.72	k31_Locus_2701_Transcri pt_2_1_6	sp P13060 EF2_DROME Elongation factor 2 OS=Drosophila melanogaster OX=7227 GN=EF2 PE=1 SV=4	0	Translation
k31_Locus_2821_Transcr ipt_1_1	232.67	k31_Locus_2821_Transcri pt_1_1_4	sp O74503 UAF30_SCHPO Upstream activation factor subunit spp27 OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) OX=284812 GN=spp27 PE=1 SV=1	1.44E-20	Transcription
k31_Locus_2869_Transcr ipt_7_1	830.20		U17-MYRTX-Pc1b		Venom peptide
k31_Locus_3104_Transcr ipt_1_1	1055.57	k31_Locus_3104_Transcri pt_1_1_4	sp P62909 RS3_RAT 40S ribosomal protein S3 OS=Rattus norvegicus OX=10116 GN=Rps3 PE=1 SV=1	1.11E-130	Translation
k31_Locus_3140_Transcr ipt_7_1	102.29	k31_Locus_3140_Transcri pt_7_1_1	sp Q27294 CAZ_DROME RNA-binding protein cabeza OS=Drosophila melanogaster OX=7227 GN=caz PE=2 SV=2	1.67E-38	Translation

		k31_Locus_3140_Transcri pt_7_1_6	sp Q9IA79 BI1_PAROL Probable Bax inhibitor 1 OS=Paralichthys olivaceus OX=8255 GN=tmbim6 PE=2 SV=1	2.81E-53	Metabolism
k31_Locus_3320_Transcr ipt_8_1	277.06	k31_Locus_3320_Transcri pt_8_1_6	sp Q9Y600 CSAD_HUMAN Cysteine sulfinic acid decarboxylase OS=Homo sapiens OX=9606 GN=CSAD PE=1 SV=2	5.09E-164	Metabolism
k31_Locus_359_Transcri pt_3_1	177.69	k31_Locus_359_Transcri pt_3_1_6	sp Q02942 TRF_BLADI Transferrin OS=Blaberus discoidalis OX=6981 PE=1 SV=1	0	Metabolism
k31_Locus_3661_Transcr	50.82	k31_Locus_3661_Transcri pt_4_1_1	sp P48814 ADH1_CERCA Alcohol dehydrogenase 1 OS=Ceratitis capitata OX=7213 GN=ADH1 PE=3 SV=1	3.49E-14	Metabolism
ipt_4_1	50.82	k31_Locus_3661_Transcri pt_4_1_4	sp Q8ND56 LS14A_HUMAN Protein LSM14 homolog A OS=Homo sapiens OX=9606 GN=LSM14A PE=1 SV=3	1.43E-48	Translation
k31_Locus_3796_Transcr ipt_9_1	1321.44	k31_Locus_3796_Transcri pt_9_1_4	sp Q964R0 CP6K1_BLAGE Cytochrome P450 6k1 OS=Blattella germanica OX=6973 GN=CYP6K1 PE=2 SV=1	7.86E-146	Metabolism
k31_Locus_4256_Transcr ipt_5_1	832.68	k31_Locus_4256_Transcri pt_5_1_4	sp Q9U3U0 RLA0_CERCA 60S acidic ribosomal protein P0 OS=Ceratitis capitata OX=7213 GN=RpLP0 PE=3 SV=1	2.64E-161	Translation
k31_Locus_436_Transcri pt_4_1	54.69	k31_Locus_436_Transcri pt_4_1_4	sp Q29GR8 MOEH_DROPS Moesin/ezrin/radixin homolog 1 OS=Drosophila pseudoobscura pseudoobscura OX=46245 GN=Moe PE=3 SV=3	0	Metabolism
k31_Locus_4459_Transcr ipt_3_1	2,379.72	k31_Locus_4459_Transcri pt_3_1_1	sp P35778 VA3_SOLIN Venom allergen 3 OS=Solenopsis invicta OX=13686 PE=1 SV=2	2.75E-76	Venom allergen
k31_Locus_458_Transcri pt_29_1	116.12	k31_Locus_458_Transcri pt_29_1_1	sp P0C5Q0 YL54F_YEAST Putative uncharacterized protein YLR154W-F OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) OX=559292 GN=YLR154W-F PE=5 SV=1	6.66E-5	
k31_Locus_4995_Transcr ipt_2_1	213.96				
k31_Locus_5153_Transcr ipt_1_1	580.68		U17-MYRTX-Pc1a		Venom peptide
k31_Locus_555_Transcri pt_3_1	153.40	k31_Locus_555_Transcri pt_3_1_5	sp Q9CZW4 ACSL3_MOUSE Long-chain-fatty-acid—CoA ligase 3 OS=Mus musculus OX=10090 GN=Acsl3 PE=1 SV=2	0	Metabolism
k31_Locus_5900_Transcr ipt_6_1	99.10				
k31_Locus_7820_Transcr ipt_5_1	171.15	k31_Locus_7820_Transcri pt_5_1_6	sp Q964R0 CP6K1_BLAGE Cytochrome P450 6k1 OS=Blattella germanica OX=6973 GN=CYP6K1 PE=2 SV=1	2.11E-111	Metabolism
k31_Locus_837_Transcri pt_10_1	140,113.05		U35-MYRTX-Pc1a		Venom peptide
k31_Locus_9915_Transcr ipt_1_1	368.99	k31_Locus_9915_Transcri pt_1_1_6	sp A8CAG3 RL17_PHLPP 60S ribosomal protein L17 OS=Phlebotomus papatasi OX=29031 GN=RpL17 PE=2 SV=1	1.54E-101	Translation
k37_Locus_1437_Transcr ipt_11_1	22.64	k37_Locus_1437_Transcri pt_11_1_1	sp Q14692 BMS1_HUMAN Ribosome biogenesis protein BMS1 homolog OS=Homo sapiens OX=9606 GN=BMS1 PE=1 SV=1	8.59E-131	Translation

		k37_Locus_1437_Transcri pt_11_1_1	sp Q10751 ACE_CHICK Angiotensin-converting enzyme (Fragment) OS=Gallus gallus OX=9031 GN=ACE PE=2 SV=1	1.17E-150	Metabolism
		k37_Locus_1437_Transcri pt_11_1_4	sp Q8BTM8 FLNA_MOUSE Filamin-A OS=Mus musculus OX=10090 GN=Flna PE=1 SV=5	3.9E-56	Metabolism
		k37_Locus_1437_Transcri pt_11_1_6	sp P21333 FLNA_HUMAN Filamin-A OS=Homo sapiens OX=9606 GN=FLNA PE=1 SV=4	2.41E-83	Metabolism
k37_Locus_1633_Transcr ipt_10_1	100.32	k37_Locus_1546_Transcri pt_4_1_3	sp P31403 VATL_MANSE V-type proton ATPase 16 kDa proteolipid subunit OS=Manduca sexta OX=7130 GN=VHA16 PE=2 SV=1	1.45E-81	Metabolism
k37_Locus_17208_Transc ript_1_1	305.05	k37_Locus_1633_Transcri pt_10_1_1	sp P82147 L2EFL_DROME Protein lethal(2)essential for life OS=Drosophila melanogaster OX=7227 GN=l(2)efl PE=1 SV=1	3.94E-15	Host defense
k37_Locus_1783_Transcr	50.40	k37_Locus_17208_Transc ript_1_1_5	sp O18640 GBLP_DROME Guanine nucleotide-binding protein subunit beta-like protein OS=Drosophila melanogaster OX=7227 GN=Rack1 PE=1 SV=2	0	Translation
ipt_3_1	59.40	k37_Locus_1783_Transcri pt_3_1_1	sp P48603 CAPZB_DROME F-actin-capping protein subunit beta OS=Drosophila melanogaster OX=7227 GN=cpb PE=2 SV=1	7.52E-167	Metabolism
k37_Locus_220_Transcri pt_3_1	123.81	k37_Locus_1783_Transcri pt_3_1_6	sp P62925 IF5A_SPOFR Eukaryotic translation initiation factor 5A OS=Spodoptera frugiperda OX=7108 GN=eIF-5A PE=1 SV=1	2.67E-97	Translation
k37_Locus_235_Transcri pt_7_1	25.71	k37_Locus_220_Transcri pt_3_1_4	sp P82147 L2EFL_DROME Protein lethal(2)essential for life OS=Drosophila melanogaster OX=7227 GN=l(2)efl PE=1 SV=1	1.09E-34	Host defense
k37_Locus_3064_Transcr ipt_4_1	885.57		U17-MYRTX-Pc1b		Venom peptide
k37_Locus_3064_Transcr ipt_4_1 k37_Locus_4142_Transcr ipt_12_1	885.57 68.07	k37_Locus_4142_Transcri pt_12_1_4	U17-MYRTX-Pc1b sp1Q9W0A01DRPR_DROME Protein draper OS=Drosophila melanogaster OX=7227 GN=drpr PE=1 SV=3	0	Venom peptide Host defense
k37_Locus_3064_Transcr ipt_4_1 k37_Locus_4142_Transcr ipt_12_1 k37_Locus_434_Transcri pt_24_1	885.57 68.07 284.63	k37_Locus_4142_Transcri pt_12_1_4 k37_Locus_434_Transcri pt_24_1_2	U17-MYRTX-Pc1b sp Q9W0A0 DRPR_DROME Protein draper OS=Drosophila melanogaster OX=7227 GN=drpr PE=1 SV=3 sp P0C5Q0 YL54F_YEAST Putative uncharacterized protein YLR154W-F OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) OX=559292 GN=YLR154W-F PE=5 SV=1	0 6.66E-5	Venom peptide Host defense
k37_Locus_3064_Transcr ipt_4_1 k37_Locus_4142_Transcr ipt_12_1 k37_Locus_434_Transcri pt_24_1 k37_Locus_4784_Transcr ipt_3_1	885.57 68.07 284.63 72.33	k37_Locus_4142_Transcri pt_12_1_4 k37_Locus_434_Transcri pt_24_1_2	U17-MYRTX-Pc1b sp Q9W0A0 DRPR_DROME Protein draper OS=Drosophila melanogaster OX=7227 GN=drpr PE=1 SV=3 sp P0C5Q0 YL54F_YEAST Putative uncharacterized protein YLR154W-F OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) OX=559292 GN=YLR154W-F PE=5 SV=1	0 6.66E-5	Venom peptide Host defense
k37_Locus_3064_Transcr ipt_4_1 k37_Locus_4142_Transcr ipt_12_1 k37_Locus_434_Transcri pt_24_1 k37_Locus_4784_Transcr ipt_3_1 k37_Locus_4799_Transcr ipt_3_1	885.57 68.07 284.63 72.33 356.68	k37_Locus_4142_Transcri pt_12_1_4 k37_Locus_434_Transcri pt_24_1_2 k37_Locus_4799_Transcri pt_3_1_5	U17-MYRTX-Pc1b sp Q9W0A0 DRPR_DROME Protein draper OS=Drosophila melanogaster OX=7227 GN=drpr PE=1 SV=3 sp P0C5Q0 YL54F_YEAST Putative uncharacterized protein YLR154W-F OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) OX=559292 GN=YLR154W-F PE=5 SV=1 sp Q6XHI1 THIO2_DROYA Thioredoxin-2 OS=Drosophila yakuba OX=7245 GN=Trx-2 PE=3 SV=1	0 6.66E-5 3.8E-28	Venom peptide Host defense Metabolism
k37_Locus_3064_Transcr ipt_4_1 k37_Locus_4142_Transcr ipt_12_1 k37_Locus_434_Transcri pt_24_1 k37_Locus_4784_Transcr ipt_3_1 k37_Locus_4799_Transcr ipt_3_1 k37_Locus_4979_Transcr ipt_3_1	885.57 68.07 284.63 72.33 356.68 316.11	k37_Locus_4142_Transcri pt_12_1_4 k37_Locus_434_Transcri pt_24_1_2 k37_Locus_4799_Transcri pt_3_1_5 k37_Locus_4979_Transcri pt_3_1_5	U17-MYRTX-Pc1b sp Q9W0A0 DRPR_DROME Protein draper OS=Drosophila melanogaster OX=7227 GN=drpr PE=1 SV=3 sp P0C5Q0 YL54F_YEAST Putative uncharacterized protein YLR154W-F OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) OX=559292 GN=YLR154W-F PE=5 SV=1 sp Q6XHI1 THIO2_DROYA Thioredoxin-2 OS=Drosophila yakuba OX=7245 GN=Trx-2 PE=3 SV=1 sp Q2PQM7 IDGF4_GLOMM Chitinase-like protein Idgf4 OS=Glossina morsitans morsitans OX=37546 GN=Idgf4 PE=2 SV=1	0 6.66E-5 3.8E-28 1.65E-61	Venom peptide Host defense Metabolism Metabolism
k37_Locus_3064_Transcr ipt_4_1 k37_Locus_4142_Transcr ipt_12_1 k37_Locus_434_Transcri pt_24_1 k37_Locus_4784_Transcr ipt_3_1 k37_Locus_4799_Transcr ipt_3_1 k37_Locus_4979_Transcr ipt_3_1 k37_Locus_4979_Transcr	885.57 68.07 284.63 72.33 356.68 316.11	k37_Locus_4142_Transcri pt_12_1_4 k37_Locus_434_Transcri pt_24_1_2 k37_Locus_4799_Transcri pt_3_1_5 k37_Locus_4979_Transcri pt_3_1_5 k37_Locus_522_Transcri pt_5_1_2	U17-MYRTX-Pc1b sp Q9W0A0 DRPR_DROME Protein draper OS=Drosophila melanogaster OX=7227 GN=drpr PE=1 SV=3 sp P0C5Q0 YL54F_YEAST Putative uncharacterized protein YLR154W-F OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) OX=559292 GN=YLR154W-F PE=5 SV=1 sp Q6XHI1 THIO2_DROYA Thioredoxin-2 OS=Drosophila yakuba OX=7245 GN=Trx-2 PE=3 SV=1 sp Q2PQM7 IDGF4_GLOMM Chitinase-like protein Idgf4 OS=Glossina morsitans morsitans OX=37546 GN=Idgf4 PE=2 SV=1 sp Q9J09 MEP50_MOUSE Methylosome protein 50 OS=Mus musculus OX=10090 GN=Wdr77 PE=1 SV=1	0 6.66E-5 3.8E-28 1.65E-61 7.24E-29	Venom peptide Host defense Metabolism Metabolism
k37_Locus_3064_Transcr ipt_4_1 k37_Locus_4142_Transcr ipt_12_1 k37_Locus_434_Transcri pt_24_1 k37_Locus_4784_Transcr ipt_3_1 k37_Locus_4799_Transcr ipt_3_1 k37_Locus_4979_Transcr ipt_3_1 k37_Locus_522_Transcri pt_5_1	885.57 68.07 284.63 72.33 356.68 316.11 69.41	k37_Locus_4142_Transcri pt_12_1_4 k37_Locus_434_Transcri pt_24_1_2 k37_Locus_4799_Transcri pt_3_1_5 k37_Locus_4979_Transcri pt_3_1_5 k37_Locus_522_Transcri pt_5_1_2 k37_Locus_522_Transcri pt_5_1_5	U17-MYRTX-Pc1b sp Q9W0A0 DRPR_DROME Protein draper OS=Drosophila melanogaster OX=7227 GN=drpr PE=1 SV=3 sp P0C5Q0 YL54F_YEAST Putative uncharacterized protein YLR154W-F OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) OX=559292 GN=YLR154W-F PE=5 SV=1 Sp Q6XHI1 THIO2_DROYA Thioredoxin-2 OS=Drosophila yakuba OX=7245 GN=Trx-2 PE=3 SV=1 sp Q2PQM7 IDGF4_GLOMM Chitinase-like protein Idgf4 OS=Glossina morsitans morsitans OX=37546 GN=Idgf4 PE=2 SV=1 sp Q9J09 MEP50_MOUSE Methylosome protein 50 OS=Mus musculus OX=10090 GN=Wdr77 PE=1 SV=1 sp Q9W0S7 SND1_DROME Staphylococcal nuclease domain-containing protein 1 OS=Drosophila melanogaster OX=7227 GN=Tudor-SN PE=1 SV=1	0 6.66E-5 3.8E-28 1.65E-61 7.24E-29 0	Venom peptide Host defense Metabolism Metabolism Metabolism Transcription

k37_Locus_562_Transcri pt_3_1	14,337.79		U35-MYRTX-Pc1b		Venom peptide
k37_Locus_6464_Transcr ipt_1_1	544.36				
k37_Locus_6510_Transcr ipt_3_1	227.69	k37_Locus_6510_Transcri pt_3_1_2	sp Q9GPH3 ATFC_BOMMO Activating transcription factor of chaperone OS=Bombyx mori OX=7091 GN=ATFC PE=2 SV=1	5.5E-24	Transcription
k37_Locus_7415_Transcr ipt_1_1	233.11	k37_Locus_7415_Transcri pt_1_1_2	sp P08962 CD63_HUMAN CD63 antigen OS=Homo sapiens OX=9606 GN=CD63 PE=1 SV=2	3.29E-29	Host defense
k37_Locus_7727_Transcr ipt_12_1	162.55	k37_Locus_7727_Transcri pt_12_1_4	sp P51659 DHB4_HUMAN Peroxisomal multifunctional enzyme type 2 OS=Homo sapiens OX=9606 GN=HSD17B4 PE=1 SV=3	0	Metabolism
k37_Locus_801_Transcri pt_9_1	197.61		·		
k37_Locus_878_Transcri pt_3_1	63.45	k37_Locus_878_Transcri pt_3_1_5	sp P19096 FAS_MOUSE Fatty acid synthase OS=Mus musculus OX=10090 GN=Fasn PE=1 SV=2	0	Metabolism
k37_Locus_9285_Transcr ipt_4_1	65.33	k37_Locus_9285_Transcri pt_4_1_1	sp P48814 ADH1_CERCA Alcohol dehydrogenase 1 OS=Ceratitis capitata OX=7213 GN=ADH1 PE=3 SV=1	3.49E-14	Metabolism
k37_Locus_996_Transcri pt_1_1	223.36	k37_Locus_9285_Transcri pt_4_1_5	sp Q8ND56 LS14A_HUMAN Protein LSM14 homolog A OS=Homo sapiens OX=9606 GN=LSM14A PE=1 SV=3	1.43E-48	Transcription
k43_Locus_1261_Transcr ipt_5_1	90.96	k37_Locus_996_Transcri pt_1_1_4	sp 013035 SAP_CHICK Prosaposin OS=Gallus gallus OX=9031 GN=PSAP PE=1 SV=1	9.28E-30	Metabolism
k43_Locus_158_Transcri pt_1_1	508.90	k43_Locus_1580_Transcri pt_1_1_4	sp P47911 RL6_MOUSE 60S ribosomal protein L6 OS=Mus musculus OX=10090 GN=Rpl6 PE=1 SV=3	8.92E-54	Translation
k43_Locus_17484_Transc ript_1_1	583.66	k43_Locus_17484_Transc ript_1_1_6	sp P46782 RS5_HUMAN 40S ribosomal protein S5 OS=Homo sapiens OX=9606 GN=RPS5 PE=1 SV=4	6.81E-122	Translation
k43_Locus_18786_Transc ript_1_1	666.99	k43_Locus_18786_Transc ript_1_1_2	sp Q95V32 RS6_SPOFR 40S ribosomal protein S6 OS=Spodoptera frugiperda OX=7108 GN=RpS6 PE=2 SV=1	4.71E-124	Translation
k43_Locus_1931_Transcr ipt_3_1	268.65	k43_Locus_1931_Transcri pt_3_1_5	sp P36362 CHIT_MANSE Endochitinase OS=Manduca sexta OX=7130 PE=2 SV=1	9.5E-174	Metabolism
k43_Locus_1965_Transcr ipt_19_1	68.06	k43_Locus_1965_Transcri pt_19_1_2	sp A0A291PQF1 UGT5_DACCO UDP-glycosyltransferase UGT5 OS=Dactylopius coccus OX=765876 GN=UGT5 PE=1 SV=1	6.23E-10	Peptide maturation
k43_Locus_2002_Transcr ipt_2_1	14,661.25		U3-MYRTX-Pc1e		Venom peptide
k43_Locus_21989_Transc ript_1_1	379.98	k43_Locus_21989_Transc ript_1_1_5	sp Q962U0 RL13A_SPOFR 60S ribosomal protein L13a OS=Spodoptera frugiperda OX=7108 GN=RpL13A PE=2 SV=1	2.13E-72	Translation
k43_Locus_2691_Transcr ipt_5_1	174.07				
k43_Locus_4209_Transcr ipt_8_1	168.13	k43_Locus_4209_Transcri pt_8_1_4	sp Q8BYR8 S41A2_MOUSE Solute carrier family 41 member 2 OS=Mus musculus OX=10090 GN=Slc41a2 PE=1 SV=1	2.18E-81	Metabolism
k43_Locus_431_Transcri pt_14_1	238.95	k43_Locus_431_Transcri pt_14_1_1	sp P0C5Q0 YL54F_YEAST Putative uncharacterized protein YLR154W-F OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) OX=559292 GN=YLR154W-F PE=5 SV=1	6.66E-5	
------------------------------------	------------	--------------------------------------	--	-----------	-----------------------
k43_Locus_5470_Transcr ipt_2_1	65451.55				
k43_Locus_556_Transcri pt_1_1	26,546.81				
k43_Locus_7390_Transcr ipt_3_1	405.53	k43_Locus_7390_Transcri pt_3_1_3	sp P08962 CD63_HUMAN CD63 antigen OS=Homo sapiens OX=9606 GN=CD63 PE=1 SV=2	3.91E-32	Host defense
k49_Locus_1030_Transcr ipt_1_1	53.41	k49_Locus_1030_Transcri pt_1_1_1	sp Q29L43 MON2_DROPS Protein MON2 homolog OS=Drosophila pseudoobscura pseudoobscura OX=46245 GN=mon2 PE=3 SV=2	0	Protein maturation
k49_Locus_1379_Transcr ipt_16_1	1,254.42	k49_Locus_1379_Transcri pt_16_1_5	sp Q5BLY5 ACPH1_APIME Venom acid phosphatase Acph-1 OS=Apis mellifera OX=7460 PE=1 SV=1	4.63E-106	Venom allergen
k49_Locus_14301_Transc ript_1_1	13,919.13		U36-MYRTX-Pc1a		Venom peptide
k49 Locus 159 Transcri	182.74	k49_Locus_159_Transcri pt_39_1_2	sp B1A4F7 VDDP4_VESVU Venom dipeptidyl peptidase 4 OS=Vespula vulgaris OX=7454 PE=1 SV=1	6.92E-9	Peptide maturation
pt_39_1		k49_Locus_159_Transcri pt_39_1_2	sp B2D0J4 VDPP4_APIME Venom dipeptidyl peptidase 4 OS=Apis mellifera OX=7460 PE=1 SV=1	0	Peptide maturation
k49 Locus 2546 Transcr	106 50	k49_Locus_2546_Transcri pt_1_1_1	sp Q9QUR2 DCTN4_RAT Dynactin subunit 4 OS=Rattus norvegicus OX=10116 GN=Dctn4 PE=1 SV=1	4.82E-98	Protein maturation
ipt_1_1	136.53	k49_Locus_2546_Transcri pt_1_1_5	sp C0HKA1 RS14B_DROME 40S ribosomal protein S14b OS=Drosophila melanogaster OX=7227 GN=RpS14b PE=2 SV=1	7.55E-85	Translation
k49_Locus_3004_Transcr ipt_3_1	550.03		U18-MYRTX-Pc1a		Venom peptide
k49_Locus_4858_Transcr ipt_1_1	514.25	k49_Locus_4858_Transcri pt_1_1_6	sp Q8TCT9 HM13_HUMAN Minor histocompatibility antigen H13 OS=Homo sapiens OX=9606 GN=HM13 PE=1 SV=1	7.4E-138	Protein maturation
k55_Locus_13572_Transc ript_1_1	355.99	k55_Locus_13572_Transc ript_1_1_4	sp Q7PQV7 ADT2_ANOGA ADP.ATP carrier protein 2 OS=Anopheles gambiae OX=7165 GN=AGAP002358 PE=3 SV=2	2.95E-173	Metabolism
k55_Locus_2091_Transcr ipt_3_1	139.93				
k55_Locus_3230_Transcr ipt_3_1	199,776.57		U3-MYRTX-Pc1d		Venom peptide
k55_Locus_5233_Transcr	241.20	k55_Locus_5233_Transcri pt_1_1_2	sp Q32NQ8 RNF10_XENLA RING finger protein 10 OS=Xenopus laevis OX=8355 GN=rnf10 PE=2 SV=1	3.41E-91	Transcription
ipt_1_1	341.30	k55_Locus_5233_Transcri pt_1_1_3	sp P41755 DHE2_ACHKL NAD-specific glutamate dehydrogenase OS=Achlya klebsiana OX=4767 PE=3 SV=1	1.52E-42	Metabolism

		k55_Locus_5233_Transcri pt_1_1_6	sp Q9U639 HSP7D_MANSE Heat shock 70 kDa protein cognate 4 OS=Manduca sexta OX=7130 PE=2 SV=1	0	Host defense
k55_Locus_600_Transcri pt_5_1	12.98	k55_Locus_600_Transcri pt_5_1_5	sp Q03001 DYST_HUMAN Dystonin OS=Homo sapiens OX=9606 GN=DST PE=1 SV=4	0	Metabolism
k55_Locus_6017_Transcr ipt_1_1	146.37	k55_Locus_6017_Transcri pt_1_1_3	sp Q16P20 CISY2_AEDAE Probable citrate synthase 2. Mitochondrial OS=Aedes aegypti OX=7159 GN=AAEL011789 PE=3 SV=1	0	Metabolism
k55_Locus_9791_Transcr ipt_1_1	505.48	k55_Locus_9791_Transcri pt_1_1_5	sp Q962U1 RL13_SPOFR 60S ribosomal protein L13 OS=Spodoptera frugiperda OX=7108 GN=RpL13 PE=2 SV=1	1.48E-88	Translation
k61_Locus_10402_Transc ript_1_1	2,364.73				
k61_Locus_1164_Transcr ipt_21_1	1,026.06	k61_Locus_1164_Transcri pt_21_1_6	sp Q5BLY5 ACPH1_APIME Venom acid phosphatase Acph-1 OS=Apis mellifera OX=7460 PE=1 SV=1	1.22E-105	Venom allergen
k61_Locus_121_Transcri pt_17_1	174.89	k61_Locus_121_Transcri pt_17_1_6	sp B2D0J4 VDPP4_APIME Venom dipeptidyl peptidase 4 OS=Apis mellifera OX=7460 PE=1 SV=1	0	Peptide maturation
k61_Locus_1387_Transcr ipt_2_1	12,4881.32				
k61_Locus_173_Transcri pt_1_1	341.75				
k61_Locus_1813_Transcr ipt_1_1	118.55				
k61_Locus_2144_Transcr ipt_4_1	314.24		U17-MYRTX-Pc1b		Venom peptide
k61_Locus_424_Transcri pt_7_1	233.62				
k61_Locus_430_Transcri pt_1_1	659.09				
k61_Locus_6299_Transcr ipt_1_1	122.65	k61_Locus_6299_Transcri pt_1_1_2	sp Q16P20 CISY2_AEDAE Probable citrate synthase 2. Mitochondrial OS=Aedes aegypti OX=7159 GN=AAEL011789 PE=3 SV=1	0	Metabolism
k65_Locus_1108_Transcr ipt_29_1	18.87	k65_Locus_1108_Transcri pt_29_1_1	sp G5E8K5 ANK3_MOUSE Ankyrin-3 OS=Mus musculus OX=10090 GN=Ank3 PE=1 SV=1	0	Transcription
k65_Locus_1117_Transcr ipt_4_1	121.99	k65_Locus_1117_Transcri pt_4_1_3	sp Q9R049 AMFR_MOUSE E3 ubiquitin-protein ligase AMFR OS=Mus musculus OX=10090 GN=Amfr PE=1 SV=2	2.2E-148	Metabolism

Supplementary Table XVIII : Addressing table of major contigs expressed in *Daceton armigerum* venom glands.

Contig Name	TPMs	Contig ORF	Seq ID Name	E-value	Function
CL1058Contig1_1	385.52				

CL114Contig1_1	969.15	CL114Contig1_1_3	sp Q91PP5 POLG_RTSVT Genome polyprotein OS=Rice tungro spherical virus (strain Vt6) OX=337080 PE=1 SV=1	6.26E-24	Transcription
CL114Contig2_1	561.49	CL114Contig2_1_5	sp Q91PP5 POLG_RTSVT Genome polyprotein OS=Rice tungro spherical virus (strain Vt6) OX=337080 PE=1 SV=1	6.35E-33	Transcription
CL1189Contig1_1	309.25				
CL1260Contig1_1	433.93				
CL1331Contig1_1	988.51				
CL1378Contig1_1	318.00				
CL183Contig1_1	325.39				
CL19Contig1_1	284.52				
CL19Contig4_1	804.76				
CL259Contig1_3	1,131.75				
CL2Contig6_1	420.77				
CL2Contig7_1	330.37				
CL315Contig1_1	315.23				
CL338Contig1_1	396.39	CL338Contig1_1_6	sp Q6UP17 POLN_EOPV Non-structural polyprotein OS=Ectropis obliqua picorna-like virus OX=240555 PE=1 SV=1	1.16E-15	Transcription
	0.155.40	CL365Contig1_1_1	sp O13067 CND2_XENLA Condensin complex subunit 2 OS=Xenopus laevis OX=8355 GN=ncaph PE=1 SV=1	5.44E-57	Metabolism
CL365Contig1_1	9,155.40	CL365Contig1_1_5	sp Q0J2B5 APM1C_ORYSJ Aminopeptidase M1-C OS=Oryza sativa subsp. japonica OX=39947 GN=Os09g0362500 PE=2 SV=2	1.95E-4	Metabolism
CL396Contig1_1	16,535.34				
CL42Contig4_1	250.22				
CL42Contig5_1	224.96				
CL511Contig1_1	33,333.90				
CL511Contig1_2	41,848.84	CL511Contig1_2_5	sp Q8TGM7 ART2_YEAST Putative uncharacterized protein ART2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) OX=559292 GN=ART2 PE=5 SV=1	2.33E-14	
CL51Contig3_1	590.70				
CL620Contig1_1	612.96	CL620Contig1_1_1	sp Q91PP5 POLG_RTSVT Genome polyprotein OS=Rice tungro spherical virus (strain Vt6) OX=337080 PE=1 SV=1	2.42E-10	Transcription

CL620Contig1_2	3,804.30	CL620Contig1_2_3	sp Q9DSN9 POLN_ABPVR Replicase polyprotein OS=Acute bee paralysis virus (strain Rothamsted) OX=1217067 GN=ORF1 PE=4 SV=1	3.07E-41	Transcription
CL630Contig1_1	13,264.70				
CL63Contig2_1	141,924.80		U32-MYRTX-Da1a		Venom peptide
CL66Contig1_1	21,188.69				
CL66Contig2_1	167,208.06				
CL76Contig1_1	765.71	CL76Contig1_1_1	sp Q91PP5 POLG_RTSVT Genome polyprotein OS=Rice tungro spherical virus (strain Vt6) OX=337080 PE=1 SV=1	1.38E-51	Transcription
CL866Contig1_1	392.78				
CL917Contig1_1	39,215.83				
CL917Contig1_3	418.16				
CL949Contig1_1	739.50		U32-MYRTX-Da1a		Venom peptide
CL963Contig1_1	392.34				
TRINITY_DN11065_c0_g 1_i1_1	470.38				
TRINITY_DN21142_c0_g 1_i1_1	1,283.38	TRINITY_DN21142_c0_g 1_i1_1_2	sp O96647 RL10_BOMMA 60S ribosomal protein L10 OS=Bombyx mandarina OX=7092 GN=RpL10 PE=2 SV=1	1.48E-127	Translation
TRINITY_DN21571_c0_g 1_i1_1	1,349.17	TRINITY_DN21571_c0_g 1_i1_1_6	sp Q9VQ62 NPC2_DROME NPC intracellular cholesterol transporter 2 homolog a OS=Drosophila melanogaster OX=7227 GN=Npc2a PE=2 SV=1	5.41E-15	Metabolism
TRINITY_DN235_c0_g1_ i1_1	2,099.21	TRINITY_DN235_c0_g1_ i1_1_1	sp Q5G5C4 RS3A_PERAM 40S ribosomal protein S3a OS=Periplaneta americana OX=6978 GN=Parcxpwex01 PE=2 SV=1	6.85E-143	Translation
TRINITY_DN235_c0_g1_ i2_1	1,317.66	TRINITY_DN235_c0_g1_ i2_1_3	sp Q6EV04 RS3A_BIPLU 40S ribosomal protein S3a OS=Biphyllus lunatus OX=197003 PE=2 SV=1	2.59E-131	Translation
TRINITY_DN23662_c0_g 1_i1_1	1,625.12		U32-MYRTX-Da1c		Venom peptide
TRINITY_DN2978_c0_g1 _i2_1	303.85				
TRINITY_DN3162_c0_g1 _i1_1	219.28				
TRINITY_DN3926_c0_g1 _i2_1	732.57				
TRINITY_DN3928_c0_g1 _i1_1	1,594.39				

TRINITY_DN4030_c0_g1 _i1_1	438.71	TRINITY_DN4030_c0_g1 _i1_1_4	sp Q02748 IF4A_DROME Eukaryotic initiation factor 4A OS=Drosophila melanogaster OX=7227 GN=eIF4A PE=1 SV=3	0	Translation
TRINITY_DN4030_c0_g1 _i2_1	313.30	TRINITY_DN4030_c0_g1 _i2_1_6	sp Q02748 IF4A_DROME Eukaryotic initiation factor 4A OS=Drosophila melanogaster OX=7227 GN=eIF4A PE=1 SV=3	0	Translation
TRINITY_DN4101_c0_g1 _i1_1	366.55				
TRINITY_DN4111_c0_g1 _i1_1	328.25				
TRINITY_DN4120_c0_g1 _i1_1	258.17				
TRINITY_DN4249_c0_g1 _i1_1	1,268.03	TRINITY_DN4249_c0_g1 _i1_1_1	sp Q8MUR4 RL13A_CHOPR 60S ribosomal protein L13a OS=Choristoneura parallela OX=106495 GN=RpL13A PE=2 SV=1	3.89E-107	Translation
TRINITY_DN4348_c0_g1 _i1_1	326.24				
TRINITY_DN4416_c0_g1 _i2_1	680.63	TRINITY_DN4416_c0_g1 _i2_1_4	sp Q9U3U0 RLA0_CERCA 60S acidic ribosomal protein P0 OS=Ceratitis capitata OX=7213 GN=RpLP0 PE=3 SV=1	9.75E-159	Translation
TRINITY_DN4468_c0_g1 _i2_1	318.45				
TRINITY_DN4519_c0_g1 _i1_1	430.41				
TRINITY_DN4631_c0_g1 _i1_1	236.12				
TRINITY_DN4656_c0_g1 _i2_1	447.85				
TRINITY_DN4754_c0_g1 _i1_1	358.79				
TRINITY_DN4754_c0_g1 _i2_1	237.69				
TRINITY_DN4845_c0_g1 _i1_1	225.96				
TRINITY_DN5009_c0_g1 _i2_1	405.79				
TRINITY_DN5068_c0_g1 _i1_1	608.26				
TRINITY_DN5122_c0_g1 _i1_1	280.77				
TRINITY_DN5137_c0_g1 _i1_1	361.14				
TRINITY_DN5239_c0_g1 _i1_1	489.27				
TRINITY_DN5243_c0_g1 _i1_1	361.30				

TRINITY_DN5401_c0_g1 i1 1	455.62				
TRINITY_DN5569_c0_g1 _i1_1	8162.46				
TRINITY_DN5794_c0_g1 _i1_1	217.27				
TRINITY_DN5825_c0_g1 _i1_1	386.36	TRINITY_DN5825_c0_g1 _i1_1_3	sp P13060 EF2_DROME Elongation factor 2 OS=Drosophila melanogaster OX=7227 GN=EF2 PE=1 SV=4	0	Translation
TRINITY_DN5881_c0_g1 _i2_1	407.19				
TRINITY_DN5889_c0_g1 _i1_1	444.78				
TRINITY_DN5998_c0_g1 _i1_1	816.90				
TRINITY_DN5998_c0_g1 _i2_1	930.76				
TRINITY_DN6008_c0_g2 _i1_1	403.55				
TRINITY_DN6008_c0_g2 _i2_1	2208.07	TRINITY_DN6008_c0_g2 _i2_1_4	sp Q94624 RS6_MANSE 40S ribosomal protein S6 OS=Manduca sexta OX=7130 GN=RpS6 PE=2 SV=1	4.94E-124	Translation
TRINITY_DN6037_c0_g1 _i1_1	556.56				
TRINITY_DN6083_c0_g2 _i2_1	290.56				
TRINITY_DN6088_c0_g1 _i1_1	4293.59				
TRINITY_DN6252_c0_g1 _i1_1	692.80				
TRINITY_DN641_c0_g1_ i2_1	327.99				
TRINITY_DN6414_c0_g1 _i1_1	575.05				
TRINITY_DN6414_c0_g1 _i3_1	484.29				
TRINITY_DN6456_c0_g1 _i1_1	1,070.14				
TRINITY_DN6532_c0_g1 _i1_1	1,494.28	TRINITY_DN6532_c0_g1 _i1_1_3	sp Q95V39 RL8_SPOFR 60S ribosomal protein L8 OS=Spodoptera frugiperda OX=7108 GN=RpL8 PE=2 SV=1	1.56E-157	Translation
TRINITY_DN6646_c1_g1 _i1_1	239.69				
TRINITY_DN6917_c0_g1 _i2_1	878.32				

TRINITY_DN6928_c0_g1 i1_1	474.39				
TRINITY_DN6980_c0_g1 i1_1	944.65	TRINITY_DN6980_c0_g1 _i1_1_1	sp P32100 RL7_DROME 60S ribosomal protein L7 OS=Drosophila melanogaster OX=7227 GN=RpL7 PE=1 SV=2	5.63E-101	Translation
TRINITY_DN7103_c1_g2 _i1_1	316.89				
TRINITY_DN7260_c0_g1 _i1_1	370.42				
TRINITY_DN7260_c0_g2 _i1_1	1,532.15	TRINITY_DN7260_c0_g2 _i1_1_5	sp P31009 RS2_DROME 40S ribosomal protein S2 OS=Drosophila melanogaster OX=7227 GN=RpS2 PE=1 SV=2	1.89E-131	Translation
TRINITY_DN7291_c0_g1 _i1_1	406.05				
TRINITY_DN7310_c0_g1 _i8_1	219.99				
TRINITY_DN7364_c1_g1 _i1_1	228.01				
TRINITY_DN7494_c0_g2 _i1_1	1,868.46	TRINITY_DN7494_c0_g2 _i1_12	sp P09180 RL4_DROME 60S ribosomal protein L4 OS=Drosophila melanogaster OX=7227 GN=RpL4 PE=1 SV=2	3.44E-173	Translation
TRINITY_DN7521_c0_g1 _i4_2	426.46				
TRINITY_DN7534_c1_g1 _i2_1	454.73				
TRINITY_DN7595_c0_g1 _i1_1	1,112.07	TRINITY_DN7595_c0_g1 _i1_1_4	sp P47911 RL6_MOUSE 60S ribosomal protein L6 OS=Mus musculus OX=10090 GN=Rpl6 PE=1 SV=3	2.36E-55	Translation
TRINITY_DN7597_c0_g1 _i1_1	1,209.49	TRINITY_DN7597_c0_g1 _i1_12	sp Q0PXX8 RSSA_DIACI 40S ribosomal protein SA OS=Diaphorina citri OX=121845 PE=2 SV=1	2.42E-125	Translation
TRINITY_DN7608_c0_g1 _i3_1	293.26				
TRINITY_DN7641_c0_g1 _i2_1	622.10				
TRINITY_DN7641_c0_g1 _i2_2	818.84	TRINITY_DN7641_c0_g1 _i2_1_2	sp P29520 EF1A_BOMMO Elongation factor 1-alpha OS=Bombyx mori OX=7091 PE=2 SV=1	0	Translation
TRINITY_DN7672_c0_g1 _i1_1	236.84				
TRINITY_DN7721_c0_g1 _i1_1	267.15				
TRINITY_DN7804_c0_g4 _i1_1	209.45				
TRINITY_DN7871_c6_g2 _i1_1	525.75	TRINITY_DN7871_c6_g2 _i1_1_5	sp Q6PDY2 AEDO_MOUSE 2-aminoethanethiol dioxygenase OS=Mus musculus OX=10090 GN=Ado PE=1 SV=2	3.59E-26	Metabolism

TRINITY_DN7873_c0_g1 _i2_1	349.91				
TRINITY_DN7904_c0_g2 i1_2	313.34				
TRINITY_DN7905_c0_g1 _i5_1	9,375.46	TRINITY_DN7905_c0_g1 _i5_1_1	sp P70645 BLMH_RAT Bleomycin hydrolase OS=Rattus norvegicus OX=10116 GN=Blmh PE=1 SV=1	1.22E-163	Host defense
TRINITY_DN7944_c0_g6 _i1_1	261.65				
TRINITY_DN7954_c0_g1 _i1_2	513.60				
TRINITY_DN7989_c0_g1 _i1_1	918.70	TRINITY_DN7989_c0_g1 _i1_1_3	sp Q2TBQ5 RL7A_BOVIN 60S ribosomal protein L7a OS=Bos taurus OX=9913 GN=RPL7A PE=2 SV=3	1.17E-121	Translation
TRINITY_DN8124_c3_g3 _i2_1	440.96				
TRINITY_DN8132_c0_g1 _i1_1	1,263.16				
TRINITY_DN8132_c0_g1 _i5_1	1,288.92				
TRINITY_DN8132_c0_g1 _i6_1	1,918.12				
TRINITY_DN8132_c0_g3 _i1_2	430.35				
TRINITY_DN8138_c3_g7 _i1_1	309.42				
TRINITY_DN8173_c2_g1 0_i1_1	73,677.50				
TRINITY_DN8173_c2_g4 _i1_1	2,515.81				
TRINITY_DN8173_c2_g8 _i1_1	33,807.83				
TRINITY_DN8173_c3_g3 _i2_1	5,7166.36				
TRINITY_DN8190_c0_g1 _i10_1	227.49				
TRINITY_DN8190_c0_g1 _i13_1	249.32				
TRINITY_DN8213_c7_g5 _i2_1	320.78				
TRINITY_DN8220_c4_g1 _i2_1	476.49				
TRINITY_DN8286_c7_g1 _i1_1	1,367.45	TRINITY_DN8286_c7_g1 _i1_1_4	sp Q5BLY5 ACPH1_APIME Venom acid phosphatase Acph-1 OS=Apis mellifera OX=7460 PE=1 SV=1_	1.73E-92	Venom allergen

TRINITY_DN8286_c7_g1 i3 1	449.80				
TRINITY_DN8298_c6_g2 _i2_1	267.27				
TRINITY_DN8357_c4_g4 _i1_1	420.65				
TRINITY_DN8363_c1_g1 _i2_1	510.95				
TRINITY_DN8363_c1_g4 _i8_1	242.89				
TRINITY_DN8368_c2_g1 _i1_1	17,112.72				
TRINITY_DN8407_c0_g1 _i1_2	648.21				
TRINITY_DN8420_c2_g6 _i1_1	420.49				
TRINITY_DN8422_c0_g1 _i1_1	230.72				
TRINITY_DN8452_c4_g2 _i1_1	18,809.08				
TRINITY_DN8482_c4_g4 _i2_1	317.33				
TRINITY_DN8485_c1_g7 _i2_1	818.56				
TRINITY_DN8492_c0_g1 _i9_1	560.74				
TRINITY_DN8494_c4_g1 _i1_1	457.72	TRINITY_DN8494_c4_g1 _i1_1_5	sp Q75VN3 TCTP_BOMMO Translationally-controlled tumor protein homolog OS=Bombyx mori OX=7091 GN=Tctp PE=2 SV=1	7.8E-83	
TRINITY_DN8494_c4_g1 _i2_1	507.00	TRINITY_DN8494_c4_g1 _i2_1_5	sp Q75VN3 TCTP_BOMMO Translationally-controlled tumor protein homolog OS=Bombyx mori OX=7091 GN=Tctp PE=2 SV=1	1.9E-90	
TRINITY_DN8503_c0_g1 _i1_1	1,484.80				
TRINITY_DN8517_c3_g1 _i1_1	523.43				
TRINITY_DN8556_c0_g1 _i9_1	240.75				
TRINITY_DN8568_c0_g1 _i1_1	503.83				
TRINITY_DN8568_c0_g1 _i2_1	380.81				
TRINITY_DN8653_c1_g1 _i1_1	211.87				

TRINITY_DN8653_c1_g1 _i12_1	223.70				
TRINITY_DN8654_c4_g2 _i1_1	992.33				
TRINITY_DN8654_c4_g4 _i1_1	6,529.57				
TRINITY_DN8681_c5_g1 _i14_1	12,130.05				
TRINITY_DN8681_c5_g1 _i6_1	15,300.94				
TRINITY_DN8720_c0_g1 _i1_1	2,229.90				
TRINITY_DN8738_c2_g2 i1_1	257.88				
TRINITY_DN8749_c1_g1 _i1_1	545.65				
TRINITY_DN8765_c1_g3 _i1_1	257.52				
TRINITY_DN8778_c1_g1 _i17_2	436.26				
TRINITY_DN8823_c3_g1 _i1_1	293.18				
TRINITY_DN8829_c2_g2 _i1_1	227.42				
TRINITY_DN8845_c2_g1 _i1_1	8,320.91				
		TRINITY_DN8851_c8_g1 _i1_1_1	sp Q36423 NU4LM_LOCMI NADH-ubiquinone oxidoreductase chain 4L OS=Locusta migratoria OX=7004 GN=ND4L PE=3 SV=1	1.00E-3	
		TRINITY_DN8851_c8_g1 _i1_1_2	sp Q34048 NU4M_CERCA NADH-ubiquinone oxidoreductase chain 4 OS=Ceratitis capitata OX=7213 GN=ND4 PE=3 SV=2	3.26E-7	
TRINITY_DN8851_c8_g1	2 (00 40	TRINITY_DN8851_c8_g1 _i1_1_2	sp P18931 NU4M_DROME NADH-ubiquinone oxidoreductase chain 4 OS=Drosophila melanogaster OX=7227 GN=mt:ND4 PE=3 SV=3	3.42E-23	
_i1_1	3,600.40	TRINITY_DN8851_c8_g1 _i1_1_2	sp P18932 NU5M_DROME NADH-ubiquinone oxidoreductase chain 5 OS=Drosophila melanogaster OX=7227 GN=mt:ND5 PE=3 SV=4	1.68E-38	
		TRINITY_DN8851_c8_g1 _i1_1_3	sp P24875 NU1M_ASCSU NADH-ubiquinone oxidoreductase chain 1 OS=Ascaris suum OX=6253 GN=ND1 PE=3 SV=2	7.8E-12	
		TRINITY_DN8851_c8_g1 _i1_1_4	sp Q37600 COX3_PYLLI Cytochrome c oxidase subunit 3 OS=Pylaiella littoralis OX=2885 GN=COX3 PE=3 SV=1	1.55E-16	
TRINITY_DN8851_c8_g3 _i1_1	13,990.26		· · · · · · · · · · · · · · · · · · ·		

TRINITY_DN8854_c4_g4 _i1_1	23,304.49		
TRINITY_DN927_c0_g2_ i1_1	484.04		

Études de peptides de venins de fourmis : diversité moléculaire et lien avec la fonction immunitaire

Résumé :

Les venins d'animaux sont des bibliothèques naturelles de composés bioactifs optimisés au cours de l'évolution, appelés toxines. Les venins de nombreux animaux restent néanmoins inexploités, notamment ceux des insectes. Plusieurs études portant sur les venins de fourmis ont révélé que ces venins étaient riches en peptides. La caractérisation du peptidome du venin de Tetramorium bicarinatum a également permis de constater que, malgré la diversité de peptides matures, ces derniers se classent en 3 grandes familles de précurseurs dont certaines ont déjà été décrites chez d'autres hyménoptères. Il est de plus apparu que des gènes codant certains d'entre eux s'expriment en dehors du système vulnérant. Ces résultats posent les questions des mécanismes impliqués dans la diversification des toxines peptidiques de venins de fourmis, ainsi que leur rôle en dehors de la fonction venimeuse. Pour répondre à ces problématiques, la première partie de ce travail de thèse a consisté en la caractérisation via des approches protéotranscriptomiques, des venins de 7 espèces de fourmis appartenant aux différentes tribus phylogénétiques de la sous-famille des Myrmicinae, et du venin d'une espèce appartenant à une sous-famille proche, les Pseudomyrmecinae. Cent toxines peptidiques aux structures variées ont ainsi été identifiées et classées en 8 superfamilles de précurseurs. La seconde partie a consisté en l'exploration du lien entre les toxines peptidiques du venin de T. bicarinatum et son immunité innée via des méthodes de biologie moléculaire et cellulaire. La présence de transcrits codant certains peptides a été vérifiée dans des organes impliqués dans l'immunité innée (i.e. corps gras, tubes digestifs). L'expression des gènes les codant a également été évaluée suite à une infection bactérienne. Il a ainsi été montré que les transcrits codant les peptides de venin sélectionnés sont présents dans les organes testés, et que certains sont produits dans les corps gras en réponse à une infection bactérienne. Ces résultats confirment l'existence d'un lien entre les peptides de venin et l'immunité innée de la fourmi T. bicarinatum, bien que des études complémentaires soient nécessaires.

Abstract:

Animal venoms are natural libraries of bioactive compounds, called toxins, which have been fine-tuned through the course of evolution. However, numerous venomous organisms are still neglected, especially venomous insects. Several studies of ant venoms revealed that they were peptide-rich. Furthermore, the characterization of the ant Tetramorium bicarinatum venom peptidome revealed that, despite the diversity of mature peptides, they belonged to 3 superfamilies of precursors, some of which have already been described in other aculeate hymenoptera. This study also observed that genes encoding some of them were expressed outside the venom apparatus. These results raise questions about the mechanisms involved in the diversification of peptide toxins from ant venoms, as well as their role apart from the venomous function. To address these issues, the first part of this thesis work consisted in the characterization via proteotranscriptomics approaches of 7 venoms from ants belonging to the different phylogenetic tribes of the Myrmicinae subfamily, and of the venom of one species. belonging to a close subfamily, the Pseudomyrmecinae. A total of 100 peptide toxins with various structures were thus identified and classified into 8 precursor superfamilies. The second part explored the link between peptide toxins of T. bicarinatum venom and its innate immunity via molecular and cellular biology methods. The presence of transcripts encoding certain peptides have been verified in organs which are involved in innate immunity of insects (i.e. fat bodies, digestive tracts). The expression of the genes encoding them has also been evaluated following a bacterial infection. It has thus been shown that the transcripts encoding the selected venom peptides are present in the organs tested, and that some are produced in fat bodies in response to a bacterial infection. These results confirm the existence of a link between the venom peptides and the innate immunity of the ant *T. bicarinatum*, although further studies are needed.